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Abstract

Several applications require information about street
furniture. Part of the task is to survey all traf�c signs. This
has to be done for millions of km of road, and the exer-
cise needs to be repeated every so often. A van with 8 roof-
mounted cameras drove through the streets and took images
every meter. The paper proposes a pipeline for the ef�cient
detection and recognition of traf�c signs. The task is chal-
lenging, as illumination conditions change regularly, occlu-
sions are frequent, 3D positions and orientations vary sub-
stantially, and the actual signs are far less similar among
equal types than one might expect. We combine 2D and
3D techniques to improve results beyond the state-of-the-
art, which is still very much preoccupied with single view
analysis.

1. Introduction

Mobile mapping is used even more often, e.g. for the
creation of 3D city models for navigation, or for digital sur-
veying campaigns by public authorities to turn old paper
maps into digital databases. Several applications need the
locations and types of the traf�c signs along the roads, see
Fig. 2. The paper describes an ef�cient pipeline for the de-
tection and recognition of such signs. Over the last years the
computer vision community has largely turned towards the
recognition of object classes, rather than speci�c patterns.
However, it would be a mistake to believe that the prob-
lem at hand is not extremely challenging. Moreover, false
positive and false negative rates have to be very low for au-
tomated methods to be useful in this case. That is why cur-
rently most of this work is still carried out by human oper-
ators. There are all the traditional problems of variationsin
lighting, pose, and background, and of occlusions by other
objects, see Fig. 1a. In addition, these signs are often not
as precisely standardised as one would expect (this also de-
pends on the country, in our case Belgium), see Fig. 1b.

Whereas the majority of contributions so far work with a
rather small subset of sign types, our dataset includes 62 dif-
ferent types of signs. Moreover, the authors usually focus

a) Within-class variability:

b) Bad standardisation:

c) Among-class similarity:

Figure 1.Within-class variability and between-class similarity
are high: Each of �rst �ve rows contains instances of the same
class. Each of the last two rows shows traf�c signs from two dis-
tinct classes.

Figure 2.3D mapped traf�c signs in a reconstructed scene.



on highway images, whereas our dataset mainly contains
images from smaller roads and streets. This poses a more
challenging problem as signs tend to be smaller, have more
often been smeared with graf�ti or stickers, suffer more
from occlusions, are often older, and are visible in fewer
images. Also, several sign types never appear along high-
ways.

Even under simpler circumstances, the results of traf�c
sign detection and recognition thus far testify to the com-
plexity of the task. Lafuente et al. [8] had26%of false neg-
atives for 3 false positives per image. Maldonado et al. [12]
used image thresholding followed by SVM classi�cation.
They mention that every traf�c sign has been detected at
least twice in the total number of 5000 video frames, with
22 false alarms. Detection rates per view are not given.
Nunn et al. [16] showed that constraining the search to road
borders and an overhanging strip signi�cantly reduces the
number of false positives, while false negatives are at3:8%.
They still found16494false positives. All signs outside the
ROI are discarded. Pettersson et al. [17] reported on one of
the few results off the highway. But they restricted the de-
tection to speed signs, stop signs and give-way signs. They
got10� 4 � 10� 5 false positive rates for1%false negatives,
but fail to mention the number of sub-windows per image.
Moutarde et al. [14] reported no false positives at all in a
150 minutes long video, but with11% of all traf�c signs
left undetected. Ruta et al. [18] combine image threshold-
ing and shape detection achieving6:2% of false negatives,
the number of false positives is not mentioned. Broggi et
al. [3] proposed a system similar to [12] where the SVM is
replaced by a neural network. No quantitative results are
presented. Although some papers mention the possibility
to track the traf�c signs, the actual analysis reported in all
these papers is limited to a single image and is therefore
also purely 2D.

Results so far are not good enough to roll out such meth-
ods at a large scale. The numbers of false positives and
false negatives are too high. As a matter of fact, this liter-
ature is a bit decoupled from mainstream computer vision.
There, recent years have witnessed a �urry of activity in ob-
ject class detection, incl. many classes that are to be found
in street scenes. The vast majority works from a single im-
age [6, 1, 9]. Yet, approaches have emerged that try to ex-
ploit contextual information like the estimated position of
a ground plane, thereby introducing a weak notion of 3D
scene layout [7]. This was seen to be very bene�cial. In a
similar vein, Wojek and Schiele [20] went further in cou-
pling object detection and scene labeling approaches. Also
their approach still works from a single image.

As a second strand of research, some recent techniques
have focused fully on the annotation of subsets of 3D point
clouds [4, 15]. 3D information is combined with motion,
colour, and other data. These systems, which have also been

mainly targeting urban scene segmentation and labeling,
show remarkable performance. Yet, smaller objects like
road signs are among the more dif�cult to handle. More-
over, traf�c signs are planar. Given that image appearance
already yields such strong clues for object recognition, we
propose a hybrid strategy.

We do not stop at single view detection and recognition,
but include 3D localisation as well. Localisation probably
most resembles that of Cornelis et al. [5], who also com-
bined explicit 3D information with 2D car and person de-
tection in a mobile city mapping context. An important dif-
ference with this earlier work lies in the far less stringent
constraints offered by the 3D scene layout (no longer ob-
jects restricted to a ground plane) and the looser spatial ar-
rangements when looking for traf�c signs. Moreover, traf�c
signs have been designed to come as subclasses, and differ-
ent types of traf�c signs within the same subclass have the
same shape and colour distributions. The distinction lies in
rather small details. These need to be picked up by the sys-
tem. Hence, the challenge is one of detecting traf�c signs ir-
respective of the typical problems of changing appearances
and occlusions, but at the same time recognizing speci�c
sign types based on small differences.

The structure of the remainder of the paper is as follows.
Section 2 �rst gives an overview of the different steps taken
by the system. Then, we focus on the most innovative as-
pects. Section 3 explains the initial selection of good can-
didates within the individual images. Section 4 explains the
MDL formulation for 3D traf�c sign localisation. Section 5
discusses experimental results and draws conclusions.

2. Overview of the system

Before starting with the description of how the traf�c
signs are detected in the data, it is useful to give a bit more
information about our data capturing procedure. Like for
most large-scale surveying applications, a van with sensors
is driven through the streets. In our case, it has 8 cameras on
its roof: two looking ahead, two looking back, two looking
to the left, and two to the right. About every meter, each
of the cameras simultaneously takes a 1628� 1236 image.
The average speed of the van is� 35km/h. The cameras
are internally calibrated and also their relative positions are
known. Structure-from-motion combined with GPS yields
the ego-motion of the van.

We do not propose online driver assistance but an of-
�ine traf�c sign mapping system performing optimization
over the captured views. The considered traf�c signs are
those that are captured at a distance of less than 50 me-
ters The proposed system �rst processes single images
independently, keeping the detection rate very high and
the number of false positives (FP) reasonable. Single-
view traf�c sign detection in conjunction with the use of
scene geometry subsequently allows for global optimiza-



Figure 3.Haar-like features used in our implementation.

tion which performs 3D localisation and a re�nement si-
multaneously. Since we deal with hundreds of thousands of
high-resolution images the approach is to quickly throw out
most of the background, to then invest increasing amounts
of time on whatever patterns survive previous steps. We
now describe each subsequent step of the single-view and
multi-view processing pipelines in more detail.

Thesingle-viewdetection phase consists of the follow-
ing steps:
1) Candidate extraction - very fast preprocessing step,
where the optimal combination of simple (i.e. computa-
tionally cheap), adjustable methods selects bounding boxes
with possible traf�c signs. This step is designed to yield
very few false negatives (FN, i.e. the number of missed
traf�c signs), while keeping the number of false positives
(FP, i.e. the number of accepted background regions)
in check. This part of the pipeline is described in more
detail in section 3, as most of the novelty in single-view
processing is here.
2) Detection- Extracted candidates are veri�ed further by
a binary classi�er which �lters out remaining background
regions. It is based on the well known Viola and Jones
Discrete AdaBoost classi�er [19]. The 6 Haar-like patterns
used are shown in Fig. 3. Detection is performed by
cascades of AdaBoost classi�ers, followed by an SVM
operating on normalized RGB channels, pyramids of
HOGs [2] and AdaBoost-selected Haar-like features.
3) Recognition- Six one-against-all SVM classi�ers select
one of the six basic traf�c sign subclasses (triangle-up,
triangle-down, circle-blue, circle-red, rectangle and dia-
mond) for the different candidate traf�c signs. They work
on the RGB colour channels normalized by the intensity
variance.

Themulti-view phase consists of the following steps:
4) Multi-view hypothesis generation- We search for pos-
sible correspondences among the remaining candidates,
within a prede�ned radius in 3D space. Every geometri-
cally and visually consistent pair is used to create a 3D hy-
pothesis. Geometric consistency amounts to checking the
position of the backprojected 3D hypothesis against the 2D
image candidates. Visual consistency gives higher weight
to pairs with the same basic shape.
5) Multi-view MDL hypothesis pruning - Minimum de-
scription length is used to select the subset of 3D hypotheses
which best explains the overall set of 2D candidates. A side
product of the MDL optimization is quite a clean set of 2D

Original Thresholded Connected Extracted
image imageI (T) components bound. boxes

Figure 4.Colour-based extraction method for thresholdT =
(0:5; 0:2; � 0:4; 1:0)>

candidates corresponding to each particular 3D hypothesis.
These candidates allow for hypothesis position re�nement.
Usually, steps 4) and 5) are iterated. More details are given
in section 4.
6) Multi-view sign type recognition - The collected set of
2D candidates for each 3D hypothesis is classi�ed by an
SVM classi�er. These classi�cations then jointly vote on
the �nal type assigned to the hypothesis.

3. Single-view candidate extraction

For step 1, we start from connected components in a
thresholded image, an idea which has already been used
in [12, 3]. The principle is demonstrated in Fig. 4, where
thethresholded imageis obtained from a colour image, with
colour channels(I R ; I G ; I B ), by application of a colour
thresholdT = ( t; a; b; c)>

I (T ) =

(
1 a � I R + b� I G + c � I B � t
0 otherwise

(1)

Since there typically is no single threshold performing well
by itself, it is necessary to combine regions selected by dif-
ferent thresholdsT = f T1; T2; : : : g, in the sense of adding
regions (OR-ing operation). Then, regions passed on by any
threshold are going to the next stage, i.e. detection. The
more thresholds are used the lower FN can be made but the
higher FP risks to get, and the higher the computational cost
will be.

Partially occluded, peeled or dirty traf�c signs also
should pass the colour test. Therefore, this cannot be made
too restrictive. Examples are shown in Fig. 5. That is why
we also employ shape information to further re�ne the can-
didates. Section 3.1 explains how the set of colour thresh-
olds are learned and how, starting from those, the colour-
based candidates are extracted. Section 3.2 then describesa
shape-based Hough transform. This takes the borders of the
colour-based candidates as input.

3.1. Colourbased candidate extraction

The task is to �nd the optimal setT of colour thresholds,
given some criterion. Since for most interesting such crite-
ria the problem is NP-complete, we formulate our search as



Occlusion Occlusion Peeled Dirty

Figure 5.Not threshold separable traf�c signs. There are still
traf�c signs which are not well locally separable from background;
therefore shape-based extraction is used.

a Boolean Linear Programming problem. We have experi-
mentally found that �nding the real optimum takes several
hours, but that BLP, due to the sparsity of the constraints,
yields a viable solution within minutes.

The most straightforward criterion is to search for a
trade-off between FP and FN

T � = arg min
T

(FP(T ) + � 1 � FN(T )) ; (2)

where FP(T ) stands for the number of false positives and
FN(T ) for the number of false negatives, resp., of the se-
lected subset of thresholding operationsT measured on a
training set. The real number� 1 is a relative weighting fac-
tor. In order to avoid over�tting and also to keep the method
suf�ciently fast, we introduce an additional constraint on
the cardinality card(T ) of the set of selected thresholds.
This can be either a hard constraint card(T ) < � or a soft
constraint as in

T � = arg min
T

(FP(T ) + � 1 � FN(T ) + � 2 � card(T )) (3)

We achieved better results with the soft constraint, but im-
posing a hard constraint may be necessary if the running
time is an issue. Sinceaccuracy1 is usually quite important
we add a term assuring that accurate methods are preferred:

T � = arg min
T

(FP(T ) + � 1 � FN(T )

+ � 2 � card(T ) � � 3 � accuracy(T )) (4)

Scalars� 1; � 2 and � 3 are weighting parameters which
we estimate by cross-validation. Reformulations of Prob-
lems (2,3,4) into the Boolean Linear Programming form are
described in the Appendix.

Simple colour thresholding comes out to be insuf�cient
in practice. We therefore introduce a couple of re�nements.
Many traf�c signs have parts that cannot be separated from
the background with any threshold. See for example Fig. 6.
The rim of the sign is too similar in colour to the back-
ground. Yet, the white inner part can be separated rather
easily. We therefore introduce the extended threshold

T = ( t; a; b; c
| {z }

T

; sr ; sc)> (5)

1Accuracy is the average of overlap between ground truth bounding
boxes with extracted bounding boxes.

Original Extracted Bounding Rescaled
image region box bound. box

Figure 6.Demonstration of the extended threshold. The ob-
ject is not well locally separable from the background, because
bricks have a colour similar to that of the red boundary. Therefore
the inner white part is extracted and the resulting boundingbox is
rescaledT = (0 :1; � 0:433; � 0:250; 0:866; 1:6; 1:6)> .

Original Extracted Hough Re�ned
image region accumulator bound. box

Figure 7.Shape-based extraction principle.The border of the
colour-based extracted region (blue) votes for different shapes in a
Hough accumulator. The green bounding box corresponds to the
maximum.

which consists of the original thresholdT and vertical resp.
horizontal scaling factors(sr ; sc) to be applied to the ex-
tracted bounding box. Such extended threshold - in the se-
quel simply referred to as threshold - can reveal a traf�c
sign, even if its rim poses problems. Learning now becomes
searching for the set of 6-dimensional thresholds.

Changing illumination poses another problem to thresh-
olding. One could try to adapt the set of thresholds to the
illumination conditions, but it is better to add robustnessto
the thresholding method itself. We adjust the threshold to
belocally stablein the sense of Maximally Stable Extremal
Regions (MSER) [13]. Instead of using the bounding box
directly extracted by the learned threshold(t; a; b; c; sr ; sc),
we use bounding boxes from MSERs detected within the
range[(t � �; a; b; c; sr ; sc); ( t + �; a; b; c; sr ; sc)]; where�
is a parameter of the method. Since MSERs themselves are
de�ned by a stability parameter� , this `TMSER' method
is parametrized by two parameters(�; �) .

3.2. Shapebased candidate extraction

Traf�c signs have characteristic shapes. Each of the
above thresholds (with scaling and TMSER extensions) let
pass a series of connected components, i.e. regions. To
these regions we now apply an additional �lter, akin to the
generalized Hough transformation. The principle is out-
lined in Fig. 7.

In general the image shapes of the signs will be af�nely
transformed versions of the actual shapes. Using the gener-



Figure 8.Threshold-speci�c fuzzy templates. Selected subset
f 23; 12; 28; 32g from 44 fuzzy-templates.

alized Hough transformation in its traditional form would
require to detect every single shape in 5D (or even 6D)
Hough accumulator spaces. Apart from the computational
load involved, working in such vast spaces is almost guar-
anteed to fail. Instead, we learnfuzzy templateswhich in-
corporate small af�ne transformations and shape variations
and we determine explicitly only the position and scale in a
3D Hough accumulator.

The most straightforward fuzzy templates could be
learned as a probability distribution of boundaries of colour-
based extracted regions for speci�c signs. Such approach,
however, would require as many templates as there are dif-
ferent shapes. A more parsimonious use of templates is pos-
sible, however. Since the learned thresholds are usually spe-
cialized for some kinds of traf�c signs, we learn threshold-
speci�c fuzzy templates. Fig. 8 gives examples. For each
threshold, we �rst collect boundaries of extracted regions
which yield correct bounding boxes. Then the scale is nor-
malized (aspect ratio is preserved) and the probability distri-
bution of the shapes extracted by the threshold is computed.
Eventually, the fuzzy template is estimated as the point re-
�ection of the probability distribution, because voting inthe
Hough accumulator requires the point-re�ected shape. For
example, the second fuzzy template in Fig. 8 corresponds
mainly to traf�c signs which are circular or upward-pointing
triangular, whence the downward-pointing triangular partof
the template (in addition to the circular part).

When a boundary is extracted by a threshold, the
threshold-speci�c fuzzy template is used to compute the
Hough transformation. A bounding box corresponding to
the maximum in the three dimensional Hough accumula-
tor (2 positions and 1 scale) is reported if the maximum
is suf�ciently high. The role of the shape selection step
mainly consists of selecting a sub-window from a colour-
de�ned bounding box, with the right shape enclosed. We
always keep the original bounding box as a separate candi-
date, however.

4. MDL 3D optimization

Single view detection and recognition is just a prepro-
cessing stage, and the �nal decision results from global op-
timization over multiple views, based on the Minimum De-
scription Length principle (MDL). Given the set of images,
single-view detections, camera positions and calibrations,
MDL searches for the smallest possible set of 3D hypothe-

Figure 9.MDL principle - the corresponding pairs generate 3D
hypotheses, from which one should not pick up the green subset
on theleft, but rather the best/smallest subset explaining the 2D
detections, shown in green on theright, thus following the MDL
principles.

ses which suf�ciently explains all detected bounding boxes.
In other words, if a set of detected bounding boxes satis-
�es some geometrical and visual constraints, then all of
these bounding boxes are explainable by one 3D traf�c sign.
Next, we explain how MDL is used for that purpose.

We start by generating an overcomplete set of hypothe-
ses: For every single 2D detection we collect everygeomet-
rically andvisuallyconsistent correspondence and use this
pair to generate a 3D hypothesis, see Figure 9. Geometrical
consistency means that the corresponding detection lies on
the epipolar line for the camera pair. Visual consistency
means that their recognized subclass types are the same.
This step, of course, generates a high number of 3D hy-
potheses, including false positives and multiple responses
for real traf�c signs. The following MDL optimization se-
lects the simplest subset which best explains 2D detections,
see Figure 9, right.

For each 3D hypothesis we will have a 3D position of the
centre, a �tted plane and thus an orientation (and sense), and
estimated probabilities to belong to the basic shapes. For a
speci�c hypothesish we gather the set of supporting 2D
candidates which have acoverage2 with the 2D projection
of h above 0.05 and for which the candidate camera and
the hypothesis are facing eachother (rather than the camera
observing the backside of the sign), at less than 50 meters.
Let the set of 2D candidates beCh .

In order to de�ne the MDL optimization problem, we
�rst computesavings(in coding length) for every single 3D
hypothesish as follows:

Sh � Sd � k1Sm � k2Se (6)

Sd is the part of the hypothesis which is explained by the
supporting candidates,Sm is the cost of coding the model
itself, while Se represents those parts that are not explain-
ing the given hypothesis, andk1; k2 are weights (as in [10]).
For each candidatec we have a 2D projection ofh, whence
the coverageOc;h of the projectedh and the candidatec.

2Coverage is the ratio between the intersection and the unionof areas.



The coverage assures independence of the size of support-
ing candidates. The estimated probability that the candi-
date explains the hypothesis is taken as the maximum of the
probabilities of them sharing a speci�c basic shape:

p(c; h) = max
t 2f4 ;5 ;� ;� ;� g

pt (c)pt (h) (7)

Sd =
X

c2 Ch

Oc;h p(c; h) (8)

Se =
X

c2 Ch

(1 � Oc;h )p(c; h) (9)

We assume that one candidate can explain only one hy-
pothesis. Interaction between any two hypotheseshi and
hj that get support from shared candidatesC = Ch i

T
Ch j

should be subtracted and is given by

Sh i ;h j =
X

c2 C

min
t 2f i;j g

(Sdt (c) � k2Set (c)) (10)

whereSdt (c) andSet (c) are constrained to the contribution
of c for ht

Leonardis et al. [11] have shown that if only pairwise in-
teractions are considered, then the Quadratic Boolean Prob-
lem (QBP) formulation gives the optimal set of models:

max
n

nT Sn; S =

2

6
4

s11 � � � s1M
...

...
...

sM 1 � � � sMM

3

7
5 (11)

Here,n = [ n1; n2; � � � ; nM ]T is a vector of indicator vari-
ables, 1 for accepted and 0 otherwise.S is the interaction
matrix withsii being thesavings,sii = Sh i , while the others
are representing the interaction costs between two hypothe-
seshi andhj , sij = sji = � 0:5Sh i ;h j . The restriction to
pairwise interactions will not fully capture situations where
more than 2 hypotheses affect the same image area.

5. Experiments

5.1. Ground truth data

Our ground truth data consists of 7356 stills (in total
11219 bounding boxes), which correspond to 2459 traf�c
signs visible at less than 50 meters in at least one view. It
includes challenging samples as shown in Fig. 1. The multi-
view traf�c sign detection, recognition, and localisationare
evaluated on 4 sequences, captured by 8 roof-mounted cam-
eras on the van, with a total of 121632 frames and 269 dif-
ferent traf�c signs. For each sign the type and 3D location
were recorded.

Figure 10.Shape-based extractable but threshold inseparable
traf�c signs - the ground truth is delineated by a red rectangle, the
best shape-based detection is shown in yellow and the best colour-
based one in green.

5.2. Singleview evaluation

The detection and extraction errors (Table 1) are evalu-
ated according to two criteria: either demanding detection
every time a sign appears (FN-BB), or only demanding it
is detected at least once (FN-TS, where we typically have
visibility in 3 views). When False Negatives are mentioned
in the literature, it is usually FN-TS which is meant, where
the number of views per sign is often even higher (highway
conditions). We considered a detection to be successful if
thecoverage� 0:65, which approximately corresponds to
the shift of a20 � 20 bounding box by2 pixels in both
directions. Note that some of our detected signs are quite
small, with the smallest11 � 10. Approximately25% of
non-extracted bounding boxes were smaller than17 � 17,
most of the others were either taken under oblique angles
and/or were visually corrupted.

Table 1 shows results of both the candidate extraction
method, which, naturally, has a high number of FP (�rst
four rows) and detection (i.e. candidate extraction followed
by AdaBoost detector), which is shown in last two rows.
The ROC curve in Table 1 compares the FN-BB/FN-TS
achievable with our pure colour-based extraction method
to that with our combined (colour+TMSER+shape)-based
extraction method. Shape extraction signi�cantly increases
the number of false positives (see for example 4th row in the
table). The reason for the increase is that we keep both the
original colour bounding boxes and add all bounding boxes
that re�ect a good shape match. Combined extraction low-
ers FN, however. Traf�c signs, not threshold separable as a
whole, but which could be extracted based on their shape,
are shown in Fig. 10.

5.3. Multiview evaluation

In this section, we report the multi-view results. Whereas
we only reported on detection in the single-view case, we
now also pay attention to recognition (the determination of



FN-TS FN-BB FP per
[%] # =1274 [%] # =3756 2MP img

Extr1 (colour) 0:5% 7 1:5% 58 3 442:4
Extr2 (colour+TMSER) 0:4% 5 1:4% 53 4 008:5
Extr3 (colour+shape) 0:2% 2 1:0% 36 6 670:3
Extr4 (colour+TMSER+shape) 0:1% 1 1:0% 36 7 157:3
Det + Extr1 2:4% 31 4:9% 184 2:5
Det + Extr4 2:2% 28 4:3% 163 2:5

Table 1.Summary of achieved results in single-view detection. Meaning of the above used abbreviations is the followingcolour
means method described in Section 3.1,TMSER stands for TMSER(�; �) = TMSER(0:1; 0:2) , shapeis Section 3.2.FN-BB means
false negative with respect to bounding boxes,FN-TS means false negative with respect to traf�c signs. The graphdepicts the detection
performance for 2 candidate extraction settings:Extr1 andExtr4.

#No.frames/TSs Loc.TS FP Loc.TSr FPr Rec.TS

18 � 3001=78 75(96:2%) 9 74(94:9%) 5 98:7%
28 � 6201=71 68(95:8%) 14 68(95:8%) 13 95:6%
38 � 2001=44 41(93:2%) 5 41(93:2%) 2 100%
48 � 4001=76 73(96:1%) 9 73(96:1%) 8 97:3%

P
8 � 15204=269257(95:6%)37 256(95:2%) 28 97:7%

Table 2.Summary of 3D achieved results. Meaning of the above
used abbreviations is the followingLoc.TS means correctly lo-
cated traf�c signs in 3D space,FP stands for false positives in 3D
andRec.TSare the 3D recognition results with respect to the lo-
cated 3D TS.Loc.TSr andFPr show the results from the original
method after �nal re�nement with template matching.

the speci�c type of each traf�c sign) and localisation perfor-
mance. Some scores may seem a bit low compared to the
single-view ones – here and in the literature – but detection
in this section includes localisation (within 3m in X-Y-Z).
Note, that most of the incorrectly 3D localised traf�c signs
were detected in at least one view.

We evaluate our multi-view pipeline on the 4 image sets.
The results are summarized in Table 2. The operating point
was selected to minimize FP at better than95%correct lo-
calisation. This could be shifted towards a better localisa-
tion rate at the cost of more FP. Fig. 11 shows samples of
missed traf�c signs (i.e. not detected or misplaced). The
main causes are occlusions, a weak con�dence coming from
the detection and/or few views where a sign is visible. The
average accuracy of localisation (distance between the 3D
position according to the ground truth and the 3D recon-
structed traf�c sign) is24:54 cm. 90%of the located traf-
�c signs are reconstructed within50 cm from the ground
truth, but we have also3 traf�c signs that are reconstructed
at more than1:5 m.

Recognition results are summarized in the last column of
Table 2. It is shown that the overall recognition is97:7%.

Figure 11.Not detected or misplaced traf�c signs.

6. Conclusions

Traf�c sign recognition is a challenging problem. We
have proposed a multi-view scheme, which combines 2D
and 3D analysis. Following a principle of spending little
time on the bulk of the data, and keeping a more re�ned
analysis for the promising parts of the images, the proposed
system combines ef�ciency with good performance. One
contribution of the paper is the Boolean linear optimisation
formulation for selecting the optimal candidate extraction
methods. Another novelty is the MDL formulation for best
describing the 2D detections with 3D reconstructed traf�c
signs, without strongly relying on sign positions with re-
spect to the ground plane. Moreover, our task includes 3D
localisation of the signs, which prior art did not consider.

In the future, we will add further semantic reasoning
about traf�c signs. They have different probabilities to
appear at certain places relative to the road, and also the
chances of them co-occurring differ substantially.
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Appendix

It is shown, how to transform the problems of eqs. (2,3,4)
into the Boolean Linear programming form.

Let us suppose we are givenn positive samples andm
different extraction methods (e.g. color thresholding with
given threshold). Every method correctly extracts (i,e., with
suf�cient accuracy) some subset of positive samples. De-



noting correctly extracted samples by"1" and incorrectly
extracted samples by"0" , each method is characterized by
an n-dimensional extraction vector. We align these vec-
tors row-wise into ann � m extraction matrixA. Intro-
ducing the binarym-dimensional vectorT , where selected
methods are again denoted by"1" and not selected method
by "0" , the number of False Negatives from the subset of
methods given byT corresponds to the number of unsat-
is�ed inequalitiesA � T � 1n , where1n denotes then-
dimensional column vector of ones. Hence, introducing an
n-dimensional binary vector of slack variables� , the num-
ber of False Negatives is

FN(T ) = min
�

1>
n � �

subj.to: A� T � 1n � �; (12)

� 2 f 0; 1gn :

Let us be given them-dimensional real valued vectorb
containing the average number of False Positives for every
method1: : : m, then the average number of False Positives
obtained using the subset of methods given byT is

FP(T ) = b> � T (13)

Substituting from Equations (12,13), Problem (2) is
rewritten as:

T � = arg min
T ;�

� 1 � 1>
n � � + b> � T

subj.to: A� T � 1n � � (14)

� 2 f 0; 1gn ; T 2 f 0; 1gm :

In addition to that, since card(T ) = 1>
m � T , Problem (3)

becomes

T � = arg min
T

� 11>
n � � + ( b> + � 2 � 1>

m ) � T

subj.to: A� T � 1n � � (15)

� 2 f 0; 1gn ; T 2 f 0; 1gm :

Finally, introducing them-dimensional vectorc with av-
erage accuracy of every method, Problem (4) becomes

T � = arg min
T

� 11>
n � � + ( b> + � 2 � 1>

m � � 3 � c> ) � T

subj.to: A� T � 1n � � (16)

� 2 f 0; 1gn ; T 2 f 0; 1gm :
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