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Chapter 1

Combining Traffic Sign Detection with 3D Tracking Towards
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1ESAT-PSI-VISICS / IBBT, Katholieke Universiteit Leuven, Belgium
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We briefly review the advances in driver assistance systems and present a real-
time version that integrates single view detection with region-based 3D tracking
of traffic signs. The system has a typical pipeline: detection and recognition of
traffic signs in independent frames, followed by tracking for temporal integration.
The detection process finds an optimal set of candidates and is accelerated using
AdaBoost cascades. A hierarchy of SVMs handles the recognition of traffic sign
types. The 2D detections are then employed in simultaneous 2D segmentation
and 3D pose tracking, using the known 3D model of the recognized traffic sign.
Thus, we achieve not only 2D tracking of the recognized traffic signs, but we also
obtain 3D pose information, which we use to establish the relevance of the traffic
sign to the driver. The performance of the system is demonstrated by tracking
multiple road signs in real-world scenarios.

1.1. Introduction

Traffic signs play a pivotal role in rendering traffic more efficient and safer. Un-
fortunately, still many accidents happen because drivers have overlooked a sign.
Therefore, increasingly cars are being equipped with vision systems that detect and
recognize such signs, in order to assist the driver. Moreover, public authorities are
carrying out large-scale campaigns to replace older, hand-drawn maps and man-
ually generated inventories by digital maps and GIS systems. The presence and
positions of traffic signs again figure high on the list of data to be surveyed. As
signs regularly change (total yearly changes in the traffic sign set are estimated to
amount to 7%!), it is important to automate their detection. Otherwise, regular
updates are too expensive. In such applications, it is not only important to detect
the presence of traffic signs, but their actual position and orientation are crucial
as well. Such factors determine whether signs are sufficiently visible and whether
they are relevant to traffic participants approaching from specific directions. Thus,
traffic sign analysis is not only about finding the signs in images, but also about
their 3D positions and orientations, especially in an urban context.
∗R. Timofte and V.A. Prisacariu contributed equally to this work.
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Fig. 1.1. Importance of determining the traffic sign orientation. The no right turn sign does not
point towards the car.

Most current work involves combining a detector with a Kalman filter, as in [1, 2],
or with a particle filter, as in [3, 4]. These methods rely on a predictable car motion
model or reliable feature detectors. For example, [1] and [5] assume the car moves
in a straight line and with constant velocity. As feature descriptors, trackers usually
use edges or other kinds of information extracted from the traffic sign shape. In [1]
the authors explicitly model geometric properties of the traffic sign shape (i.e. a
triangle-shaped sign has to be equilateral). This leads to a lack of robustness when
subjected to occlusions, deformations or motion blur. In [3] the authors track
circular signs and assume these have a colored border on a white interior and that
clear edges can be extracted. This approach would not extend to differently shaped
signs and is again vulnerable to motion blur. A solution to some of these problems
is region based tracking. Regions are more stable than edges so tracking is more
robust, and they are less affected by occlusions or motion blur.

To our knowledge, with notable exceptions like [3] and [6], most previous road
sign work has been 2D. That is, the position of the traffic sign was tracked in the
image rather than in 3D space. In [3] the authors use inertial sensors mounted on
the car to help them obtain an approximation of the 3D pose of the signs with
respect to the car. Unfortunately this approach fails when the traffic sign does not
point towards the car, as in the case shown in figure 1.1. Here, the no right turn
sign does not have the same orientation as the inertial sensor mounted on the car.
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An alternative method is presented in [6], where multiple views, 3D reconstruction,
and a Minimum Description Length based method are used. Although a 3D pose
is recovered, it is an offline method for 3D mobile mapping purposes.

Our approach integrates a single view detection and recognition step with a
multi-object, model-based, 3D tracker. This has several advantages:

(i) we are able to obtain the full 3D pose of the traffic signs in the image, account-
ing for the case in figure 1.1,

(ii) the tracking is region based, making it robust to motion blur and occlusions,
(iii) because our tracker processes only a small region in and around the detection

we are able to achieve real time performance.

The remainder of this chapter is structured as follows: we review the state-of-
the-art in Section 1.2 and present an overview of our system in Section 1.3. In
Section 1.4 we detail the single view detection and recognition parts and in Section
1.5 the energy function used both in the non-maximum supression and the 3D
tracking stages, themselves presented in Sections 1.6 and 1.7, respectively. Section
1.8 shows results on a large database with images and videos and we conclude in
Section 1.9.

1.2. State-of-the-art

1.2.1. Single view detection and recognition

A traffic sign is designed to be easily recognizable using color, shape and appearance.
Current state-of-the-art work considers these properties either individually or in
combination. The standard pipeline starts with a detection phase for localizing
candidates in the image space, followed by a recognition phase for setting the labels.
The detection often employs a fast segmentation/candidate extraction step, usually
done through simple methods, followed by pruning methods to reduce the false
detections. The recognition phase aims at fast and robust classification of traffic
signs while space/temporal integration (i.e. tracking) can help by exploiting the
information from already processed frames to improve performance in the current
frame.

Color is important in spotting the traffic sign in cluttered environments. Many
approaches use simple crafted thresholds for each color (i.e. red, blue, yellow,
black, white) in a suitable color space such as RGB, Hue-Saturation-Intensity/Value
(HSI,HSV), or Luv. In [7], for each color, pairs of thresholds for Hue and Saturation
channels are picked from the color distribution during training. Figure 1.3 depicts
the extraction of candidates based on color thresholding. Hue is invariant to light-
ing. This property is exploited in [8] where a shadow-highlight invariant method is
proposed. [9] also uses HSV and a dynamic pixel aggregation technique which em-
ploys dynamic thresholding to address the hue dependence on external brightness
variations. The saturation and intensity values of the images are used to adapt these
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thresholds. [10] uses a region growing method, which merges neighboring pixels with
similar colors. Other color-based approaches train classifiers or probabilistic color
models to determine the likelihood of a pixel to belong to a reference color [11].

The regular shapes shared among different traffic sign types render general shape
detectors useful. A form of generalized Hough transform is used in [12] for regu-
lar polygonal shapes, while [13] uses distance transform matching and a template
hierarchy to capture the variety of object shapes. AdaBoost [6, 14] or part-based
models [15] are highly accurate in detection and are used in cascades for specific
shape classes. In [6, 14, 16] as well as in this paper, color, shape and appearance
cues are combined for detection.

Also, for recognition, there is a large variety of methods. Most machine learning
techniques have also been used for classifying traffic signs. A recent classification
challenge [17] on German traffic signs showed that convolutional neural networks,
SVM with an intersection kernel, and Sparse Representation-based classifiers [18]
are currently the top performers. The features used by the top contenders were
intensity, Histogram of Oriented Gradients (HOGs) [18, 19] and their projections.
Color is not a critical feature for traffic sign classification, but for discriminating
between traffic signs and background.

The results of traffic sign detection and recognition thus far testify to the great
difficulty of the task. In [20] the reported performance is 26% false negatives (missed
traffic signs) at a level of 3 false positives (false alarms) per image. [7] applies image
thresholding followed by SVM classification. Every traffic sign is detected at least
twice in a total of 5000 video frames, with 22 false alarms. Detection rates per
view are not given. In both works the thresholds are manually selected. In [21] the
search is constrained to road borders and an overhanging strip, by using inertial
sensors and estimating 3D geometry. This significantly reduces the false positives,
while the false negative rate is 3.8%. These three systems were tested on highways.

The following systems have also been demonstrated off the highways. By re-
stricting the detection to speed, stop and give-way signs, [22] reports a performance
of 10−4 − 10−5 false positive rates for 1% false negatives, but the number of sub-
windows per image is not mentioned. [23] reports no false positives in a 150 minute
long video, but misses 11% of all traffic signs. In [2, 24] image color thresholding and
shape detection are combined, achieving 6.2% false negatives. The number of false
positives is not mentioned. [25] proposed a system similar to the one in [7], where
the SVM is replaced by a neural network. No quantitative results are presented.

While the majority of the previous contributions work with and report the
performance on a rather small subset of sign types, our system (using settings
from [6, 16]) handles 62 different types of signs. Moreover, authors usually focus on
highway images, whereas our database mainly contains images from smaller roads
and streets. This is a more challenging problem as signs tend to be smaller, have
more often been smeared with graffiti or stickers, suffer more from occlusions, are
often older, and are visible in fewer images. Also, several sign types never appear
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along highways.

1.2.2. 3D Region-based Segmentation and Tracking

Fast and accurate image segmentation and pose tracking are fundamental tasks in
computer vision. Most current studies treat these two tasks independently and of-
ten use edge based segmentation, leading to an inability to deal with occlusions or
motion blur. A common solution to the edge problem is the use of regions, whose
shape and evolution can be effectively modelled using level-set functions [26]. The
first paper to use regions in 3D pose recovery was [27]. There the authors represent
the contour by a zero level-set of a 3D embedding function and evolve it in a single
iterative step, in two stages: first an infinite dimensional level set energy function
(with an added shape term) is minimized with respect to the segmentation, in the
expectation that the contour will then match the projection of the occluding con-
tour of the 3D object. Second, each point on the contour is back-projected to a
ray (represented in Plücker coordinates), and the pose sought that best satisfies the
tangency constraints that exist between the 3D object and these rays. The obvious
pitfall of this method is that the evolution of the contour is not limited to the space
of possible segmentations, which can make the resulting segmentations still inaccu-
rate. The method is improved in [28] where the unconstrained contour evolution
stage is removed, and the minimization takes place by evolving the contour (approx-
imately) directly from the 3D pose parameters. The direction of contour evolution
is determined by the relative foreground/background membership probabilities of
each point, while the amount of evolution is apparently a “tunable” parameter.

In this work we use the variational approach of [29], where the Bibby-Reid energy
function of [30] is differentiated with respect to the 6 DoF 3D pose parameters,
simultaneously yielding both segmentation and pose. This method has the benefit
of running in real time and of being resilient both to occlusions and to motion blur.

1.3. Overview of the System

a b c d f
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Fig. 1.2. Algorithm overview

An outline of our algorithm is shown in figure 1.2. It consists of 5 steps. First
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the signs are detected using a single view detection step. Next the sign in each
detection is recognized and the best detection for each object is selected. Next,
for each sign in the image, an approximate 3D pose is computed, by combining a
predicted 3D pose (from the previous frame, with a constant velocity motion model)
with a 3D pose obtained from the detection bounding box. The detection bounding
box is then converted to a 3D pose using a 4 point planar pose recovery algorithm.
Finally, the 3D tracker is iterated from the approximated pose, which results in a
refined 3D pose, for each object in the image. We use the object detection and
recognition algorithm from [6] followed by the 3D tracking from [16].

1.4. Single-View Detection and Recognition

The single view processing starts with a fast candidate extraction process, followed
by a pruning/detection process based on AdaBoost cascades, and finally after the
further filtering by a background vs. traffic sign SVM classifier, the detections are
assigned to the class with the highest estimated probability in the corresponding
one-against-all SVM output. The candidate extraction and detection parts follow
the work from [6], used also in [16]. The classification part follows settings from [18].

The simplest and most often used extraction method for traffic sign detection
is extraction of connected components from a thresholded image [7, 25]. (see fig-
ure 1.3). The thresholded image is obtained from a color image (RGB in [6, 16]
and herein), with color channels (IR, IG, IB), by application of a color threshold
T = (t, a, b, c)>:

I(T ) =

{
1 a · IR + b · IG + c · IB ≥ t
0 otherwise

(1.1)

Original Thresholded Connected Extracted
image image I(T ) components bound. boxes

Fig. 1.3. Color-based extraction method for threshold T = (0.5, 0.2,−0.4, 1.0)> [6].

Under variable illumination conditions and in the presence of a clut-
tered/complex background an extraction method based on only a few manually
selected thresholds is insufficient for extracting the traffic signs. It is necessary to
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Original Extracted Bounding Rescaled
image region box bound. box

Fig. 1.4. Extended threshold addresses the problem of signs not well locally separable from

the background. The bricks have a color similar to the red boundary, the inner white part is

extracted and the resulting bounding box is rescaled T = (0.1,−0.433,−0.250, 0.866, 1.6, 1.6)> [6].

combine regions selected by several thresholds T = {T1, T2, . . . }, in the sense of
adding regions (OR-ing operation). The regions that pass are the input for the
next stage, i.e. detection. Using more thresholds can lead to overfitting. It lowers
the number of false negatives (FN), but adds computational cost and increases the
number of false positives (FP).

We search for the optimal subset T of such thresholds starting from thousands
of possible color thresholds. We formulate our search as an Integer Linear Pro-
gramming (ILP) problem. ILP yields a viable solution within minutes, due to the
sparsity of the constraints. Searching for a trade-off between FP and FN is the
most straightforward criterion to guide this optimization. To avoid overfitting and
to keep the method sufficiently fast, we additionally constrain the number of selected
thresholds, the cardinality, card(T ). The accuracy, defined as the average overlap
between ground truth (annotation) bounding boxes with the extracted bounding
boxes, is important for the subsequent steps in the system. We penalize inaccurate
extractions:

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T ) + κ2 · card(T )− κ3 · accuracy(T )) (1.2)

where FP(T ) is the number of false positives and FN(T ) is the number of false
negatives measured on a training set. The weighting scalars κ1, κ2 and κ3 are
learned parameters estimated by cross-validation. The reformulation of problem
1.2 into an ILP form is described in [6, 14].

The contour of the traffic sign often cannot be separated from the background
due to color similarity. In such cases we still have the inner contours that can
be extracted by color thresholding. Such thresholding is followed by rescaling the
obtained bounding box to include the whole traffic sign. See for example figure 1.4.
The inner part can often define the traffic sign’s outline with sufficient accuracy and
we therefore introduce the extended threshold — in the sequel simply referred to as
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threshold:

T = (t, a, b, c︸ ︷︷ ︸
T

, sr, sc)> (1.3)

which consists of the original threshold T and vertical and horizontal scaling factors
(sr, sc).

One could try to adapt the set of thresholds to the illumination conditions.
To add robustness to the thresholding method itself we adjust the threshold to
be locally stable in the sense of Maximally Stable Extremal Regions (MSER) [31].
Instead of directly using the bounding box as extracted by the learned threshold
(t, a, b, c, sr, sc), we use bounding boxes from MSERs detected within the range
[(t−ε, a, b, c, sr, sc); (t+ε, a, b, c, sr, sc)], where ε is a parameter of the method. This
‘TMSER’ method is parametrized by two parameters (ε,∆), as the MSER adds a
stability parameter ∆.

Dirty, peeled, partially occluded traffic signs also should pass the color test.
Therefore, we also need to employ shape information in order to remain sufficiently
selective. We learn fuzzy templates to incorporate small affine transformations and
shape variations and we only explicitly determine the position and scale in a 3D
Hough accumulator. For more details please refer to [6, 14].

The candidates extracted are verified further by a binary classifier which filters
out remaining background regions. It is based on the Viola and Jones Discrete
AdaBoost classifier [32]. Detection is performed by cascades of AdaBoost classifiers,
followed by an SVM operating on normalized RGB channels, pyramids of HOGs [33]
and AdaBoost-selected Haar-like features to prune the background further.

Finally, the detections are further classified as their specific traffic sign type.
For each detection we compute pyramids of HOG features as in [34], LDA-project
them, and we train one-against-all Linear SVM classifiers. The assigned traffic sign
type is the one with the highest score estimated from the SVM classifier output.

1.5. Pixel-Wise Posteriors Energy Function

Before describing our non-maximum suppression and 3D tracking stages we intro-
duce the Bibby-Reid [29, 30] pixel-wise posteriors energy function, which is the basis
of both stages.

For any image I with an image domain Ω and known color statistics (foreground
and background membership probabilities), the pixel-wise posteriors (PWP) energy
function is a function of the contour that separates the image domain into a fore-
ground and a background domain. The PWP energy function has a maximum when
the contour best separates the two regions i.e. when all the pixels in the foreground
region have a higher probability of being foreground than of being background (and
viceversa). Figure 1.5 shows such an example. Here the contour is denoted with C,
the foreground region with Ωf and the background region with Ωb. The implicit
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Ωf

Ωb

C

Fig. 1.5. Representation of the object showing the contour of the projection C, the foreground

region Ωf and the background region Ωb

representation of the contour is used, by representing it as the zero level of a level
set function [26].

Of course, the PWP energy function is not the only energy function to measure
segmentation quality. It is, however, one of the best behaved ones, as demonstrated
in [29, 30], having a large basin of convergence and few local minima. Furthermore,
it can be used both for non-maximum suppression and for 3D tracking, as shown
in the following sections.

The PWP energy function is:

E(Φ) = −
∑
x∈Ω

log
(
He(Φ)Pf +

(
1−He(Φ)Pb

))
(1.4)

Here He is the smooth Heaviside function, x is the pixel in the image, Φ the
level set embedding function and:

Pf =
P (yi|Mf )

ηfP (yi|Mf ) + ηbP (yi|Mb)
, Pb =

P (yi|Mb)
ηfP (yi|Mf ) + ηbP (yi|Mb)

(1.5)

with ηf the number of foreground pixels, ηb the number of background pixels,
yi the color of the i-th pixel, P (yi|Mf ) the foreground model over pixel values y
and P (yi|Mb) the background model. We use RGB images and our models are
histograms with 32 bins for each channel, which are updated online, allowing for
variations in illumination.

1.6. Non-Maximum Suppression

At this stage several detections might be available for each object, as shown in
figure 1.6. We need to select only a single, best segmentation, process known as non-
maximum suppression. There are several methods for doing this. For example [19]
uses mean-shift to search in a 3D scale–location space.

We on the other hand, we have the advantage of knowing color models for
the foreground and for the background. This means that, for all the detected
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Fig. 1.6. Non-maximum suppression example results

bounding boxes, we can select the one which best segments the traffic sign from
the background. To do this we evaluate the Bibby-Reid energy function described
above for all detected bounding boxes and select the one with the highest color
matching score.

With b as the bounding box we write:

P (b) =
∏
x∈Ω

(
He(a(x))Pf +

(
1−He(a(x))

)
Pb

)
(1.6)

where we replace the level set function Φ with a function a(x) indicating membership
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of pixel x to the inside or outside of the bounding box:

a(x) =

{
1 x inside the bounding box

0 otherwise
(1.7)

Obviously, when an object is detected for the first time, we have no color model
yet. In this case we choose the detection with the highest SVM score, and initialize
the two color models P (yi|Mf ) and P (yi|Mb).

1.7. Approximate 3D Pose Reconstruction and 3D Tracking

At this stage of the algorithm we have a single, correct, bounding box for every traffic
sign in the image and we need to track their 3D position (rotation and translation).
The core of our tracking procedure is the PWP3D algorithm [29]. It assumes a
known 3D model and a calibrated camera and it maximizes the above-mentioned
pixel-wise posteriors energy function with respect to the pose of the known model.
This optimization is done by computing the derivatives of the energy function with
respect to the pose parameters and using gradient descent. Note that convergence
is not guaranteed within the permitted number of iterations, but in our testing we
noticed that an average of 15 iterations is enough for a satisfactory result.

Following [29], we can write:

∂E

∂λi
=
∑
x∈Ω

Pf − Pb
He(Φ)Pf +

(
1−He(Φ)

)
Pb

∂He(Φ)
∂λi

(1.8)

where λi are the pose parameters (7 in total). In this work, similar to [29], we use
quaternions to describe rotation.

∂He

(
Φ(x, y)

)
∂λi

=
∂He

∂Φ

(
∂Φ
∂x

∂x

∂λi
+
∂Φ
∂y

∂y

∂λi

)
= δe(Φ)

[
∂Φ
∂x

∂Φ
∂y

]
∂x

∂λi

∂y

∂λi

 (1.9)

where δe is the Dirac delta function.
At each iteration of the algorithm Φ is recomputed as the signed-distance func-

tion of the projected contour. The partial differentials of the level set function with
respect to pixel position, ∂Φ

∂x and ∂Φ
∂y , are computed using centered finite differences.

Every 2D point on the contour of the projection of the 3D model has at least
one corresponding 3D point X, for which:

[
x

y

]
=


−fu

X

Z
− u0

−fv
Y

Z
− v0

 (1.10)
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Therefore:

∂x

∂λi
= −fu

∂

∂λi

X

Z
= −fu

1
Z2

(
Z
∂X

∂λi
−X ∂Z

∂λi

)
(1.11)

Similar for y.
Continuing, each point X in camera coordinates, has a corresponding 3D point

X0 in object coordinates, so:
X

Y

Z

1

 = R


X0

Y0

Z0

1

+


tx
ty
tz
0

 (1.12)

where R is the rotation matrix and is a function of the rotation quaternion and
tx, ty and ty are the translation parameters. ∂X

∂λi
, ∂Y∂λi

and ∂Z
∂λi

follow trivially. For
more details the reader is refereed to [29].

There are two issues with the above formulation which need to be addressed in
order for us to apply this tracker to our problem. The PWP3D tracker needs an
initial 3D pose and values for the foreground/background membership probabilities.
Also, the PWP3D tracker can lose tracking, so at each new frame, the 2D detections
need to be converted to (approximate) 3D poses to be combined with the 3D tracker.
These two problems are addressed in the following sections.

1.7.1. Initialization

Fig. 1.7. 3D–2D point correspondences

Traffic signs can be approximated as planar objects, which means we can use
any one of several planar pose recovery algorithms currently available to convert
the 2D bounding box surrounding the detection to a 3D pose. We use the currently
state-of-the-art algorithm introduced in [35].
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This algorithm requires (at least) 4 3D–2D point correspondences and works
iteratively, minimizing a sum of squared object-space collinearity errors. We use
the 4 2D corners of the 2D detection bounding box and relate them to the 4 corners
of the bounding box enclosing the 3D model of object, as depicted in figure 1.7.

An example result is depicted in figure 1.2e.

1.7.2. Detector–Tracker Integration

The PWP3D tracker will often lose its track if there is no overlap between the
positions of the tracked object at consecutive frames. We therefore use the 3D
poses recovered from the detection bounding boxes (as presented in the previous
subsection), combined with a constant velocity motion model, to re-localize the 3D
tracker.

One common solution is to use a Kalman filter for a purely statistical fusion
of the tracking data with the approximate poses from the detector. A Kalman
filter represents all measurements, system state and noise as multivariate Gaussian
distributions. In contrast, in this work we first compute an approximate 3D pose
for each 3D sign at the current frame, by combining the detection with a motion
model. This serves as an initialization for the PWP3D pose optimization described
above. By iterating the tracker rather than doing a purely statistical data fusion
we make no pretense on the type of these probability distributions.

We define a constant velocity motion model:

vitk = tk−1 − tk−2, virk
= rk−1r

−1
k−2 (1.13)

where k is the current frame, k− 1 is the previous frame, t is the translation and r
is the rotation quaternion from the tracker.

There is also a velocity given by the 2D detections:

viitk = uk − uk−1, viirk
= pkp

−1
k−1 (1.14)

where u is the translation and p is the rotation quaternion, obtained from the
detector by using the 4 point planar pose recovery algorithm.

When the object is initially detected it is most likely far from the camera, so its
rotational motion is less predictable, making the chance of lack of overlap higher.
In this case detections should be trusted more. When the object is close to the
camera, rotational motion is more predictable so the chance for lack of overlap is
smaller. In this case the motion model should be trusted more.

The predicted pose for the current frame becomes:

tk = tk−1 + αvitk + βviitk , rk = rk−1qαv
i
rk
qβv

ii
rk

(1.15)

where k is the current frame, k − 1 is the previous frame, t is the translation from
the tracker and u is the translation from the detector. The variables α, β, qα and
qβ are dependent on the distance between the object and the camera. α and qα are
inversely proportional to this distance while β and qβ are proportional to it.

Finally the predicted pose (tk, rk) is refined using the tracker.
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Table 1.1. Summary of achieved results in single-view detection.
FN-TS FN-BB FP per

[%] #/859 [%] #/2571 2MP img

Extr1 (color) 0.7% 6 1.1% 29 3 281.8
Extr2 (color+TMSER) 0.7% 6 1.1% 28 3 741.7
Extr3 (color+shape) 0.5% 4 0.7% 17 5 206.2
Extr4 (color+TMSER+shape) 0.5% 4 0.7% 17 5 822.0

Det + Extr1 2.3% 20 4.0% 103 2
Det + Extr4 1.9% 16 3.2% 82 2

Extr marks candidate extraction setting. color means extended color thresholds,

TMSER stands for TMSER(ε,∆) = TMSER(0.1, 0.2), shape is for fuzzy template
methods. FN-BB means false negative with respect to bounding boxes, FN-TS

means false negative with respect to traffic signs.

1.8. Experiments

We report results for different parts of our system: detection and recognition,
and 3D tracking. We are using the BelgiumTSa database as in our previous
work [6, 14, 16]. It contains 13444 traffic sign (TS) annotations in 9006 still images,
corresponding to 4565 physically distinct traffic signs visible at less than 50 meters
from the camera. BelgiumTS has 3 main subparts: “Training”, “2D Testing”, and
“3D Testing”, as well as a classification subset, BelgiumTSC [18].

1.8.1. Detection Results

The Training part of BelgiumTS is used for learning the suitable candidate extrac-
tion methods as well as for training the AdaBoost cascades and the SVM classifiers,
while the 2D Testing part is used to assess the performance. The method has only
been trained for 62 traffic signs classes. In 2D Testing the number of used annota-
tions is 2571, corresponding to 859 physically distinct traffic signs. The output of
the cascades is processed further by an SVM classifier that uses Haar-like features,
pyramids of HOGs and pixels in RGB space.

The detection and extraction errors (Table 1.1) are evaluated according to two
criteria: either demanding detection every time a sign appears (FN-BB), or only
demanding it is detected at least once (FN-TS). On average, a sign is visible in
about 3 views. Coverage is defined as the ratio between intersection and the union
of two areas. A detection is successful if coverage ≥ 0.65 when compared to the
annotation.

Table 1.1 shows results of both the candidate extraction (still with an appreciable
number of FP, see first four rows) and the final detection (i.e. candidate extraction
followed by AdaBoost detector and SVM, see last two rows). The shape extraction
significantly increases the number of false positives (see for example 4th row in the
table). The reason is that we keep both the original color bounding boxes and add
all bounding boxes that reflect a good shape match. Combined extraction lowers
aBelgiumTS is available at: http://homes.esat.kuleuven.be/~rtimofte/



March 23, 2011 10:31 World Scientific Review Volume - 9.75in x 6.5in Chapter˙Luc

Combining Traffic Sign Detection with 3D Tracking Towards Better Driver Assistance 15

FN, however. Here we use the Det+Extr1 setting.
We compare the pipeline outlined so far with a sliding window approach and

a part-based model detector. For the sliding window, we train Discrete AdaBoost
cascades directly on sampled subwindows from the Training data, instead of the ex-
tracted candidates as for Det+Extr1. For details please refer to [14]. The number
of processed windows per 1628 × 1236 image is higher than 12 million. Figure 1.8
shows the complementarity of the sliding window approach to our Det+Extr1
pipeline. While the individual pipelines have a comparable performance, the com-
bination improves over both. Figure 1.9 shows cases that could be detected by one
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TS:combined (sliding window & det+extr1)

BB:part−based models (Felzenszwalb)

TS:part−based models (Felzenszwalb)

Fig. 1.8. Comparison with state-of-the-art methods. Detection plots for every time a sign
appears (BB-bounding box level), or demanding it is detected at least once (TS-traffic sign level).

pipeline but not the other. In our single-core / single-thread implementations, the
Det+Extr1 pipeline is about 50 times faster than the sliding window pipeline.

We also compare with the state-of-the-art generic object class detector of Felzen-
szwalb et al. [15], the top performer in the PASCAL VOC Challenge 2009 [36]. We
use the scripts from the authors and we train on the Training part of BelgiumTS
a model with 5 components which correspond to the basic shapes of the traffic
signs. The poorer performance of the part-based detector when compared with our
specialized systems (see figure 1.8) is believed to be caused by the fact that this ap-
proach is a generic one and only works on HOG features. However, the part-based
model detector is also still far from realtime performance.

1.8.2. Recognition Results

We evaluate several settings for traffic sign recognition on BelgiumTSC [18], the
classification subset of BelgiumTS database which contains 62 different sign types,
4591 training samples and 2534 testing samples. We use raw gray scale pixel val-
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a) Missed detections:

b) Detected only by sliding window:

c) Detected only by det+extr1 :

Fig. 1.9. Complementarity of sliding window and the proposed approach. Shown are
samples where one method fails but the other one is successful (a,b), at the same threshold level.

ues — intensity (I) and pyramids of histogram of oriented gradients (PHOG) as
were used in [18], where it was shown that for classification purposes the color
information is not essential when the samples are known to be traffic signs. The
most discriminative features of the traffic sign are the inner pattern and the shape.
This is of course an explicit design goal of traffic signs. We investigate the super-
vised dimensionality reduction based on Linear Discriminant Analysis (LDA) with
regularization [37]. The features are l2-norm normalized to sum to 1. The LDA
regularization parameter is 0.1.

Table 1.2 depicts the performance achieved using the Sparse Representation-
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based Classifier (SRC), Linear kernel SVM (LSVM), Intersection Kernel SVM
(IKSVM), Polynomial Kernel SVM (POLYSVM) and Radial Basis Function SVM
(RBFSVM). The classifiers and their settings are as in [18]. PHOG features are
more discriminative than the raw intensity values, but this comes with an increase
in time for computing the features and training the classifiers. While provided here,
SRC is not applicable for our task as it is 10 to 100 times slower than the other
SVM classifiers when run for test. The PHOG features with IKSVM is the winning
setting, achieving 97.79% on the BelgiumTSC data. Working on LDA projected
features speeds up the training and the testing. SRC benefits greatly from the dis-
criminatively projected features. We use here LSVM+LDA+PHOG because of the
high speed and performance.

Table 1.2. Recognition rates on the BelgiumTSC database.
Features I PHOG LDA+I LDA+PHOG

SRC [%] 85.04 92.34 94.32 97.36

LSVM [%] 90.69 96.68 91.28 96.96

IKSVM [%] 91.36 97.79 91.67 96.80

POLYSVM [%] 89.94 96.61 91.87 96.80

RBFSVM [%] 90.41 96.57 91.99 97.16

1.8.3. 3D Tracking Results

We begin by showing qualitative examples. In figure 1.10 we show our system
tracking a pedestrian crossing sign and obtaining an accurate pose even when the
object is far from the camera. Similarly, in figure 1.11 we show our algorithm
successfully tracking a give way sign. An application which comes to mind is to
calculate the distance between each sign and the car, to then automatically adjust
the speed of the car. Figure 1.12 shows our system tracking multiple round traffic
signs. Currently we estimate each pose independently, though of course relative to
the camera each sign undergoes the same rigid transformation. This coupling would
results in improved performance.

As mentioned several times in this paper, our system is able to deal with occlu-
sions. Figure 1.13 shows our system successfully tracking a parking sign, in spite of
it being occluded by a tree.

Fig. 1.10. Filmstrip showing frames from a video tracking a pedestrian crossing sign
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Fig. 1.11. Filmstrip showing frames from a video tracking a triangular sign

Fig. 1.12. Filmstrip showing frames from a video tracking multiple round signs

Fig. 1.13. Filmstrip showing frames from a video tracking a parking sign, in spite of it being

occluded by a tree

We compared the performance of our system by tracking a single sign over a
distance of 60m (or 60 frames at 36km/s), with and without the 3D tracker. The
car was moving along a straight line, with constant speed. Translation should
therefore change linearly, while rotation should remain constant. Figure 1.14 shows
the results for a circular sign, figure 1.15 for a rectangular sign and figure 1.16 for a
triangular sign. At higher distances the object shrinks to only a few tens of pixels,
so detection and tracking are prone to errors. Still, the 3D tracker is able to provide
smoother values for the translation. Though there may be little difference between
using the 3D tracker and using just the 4 point planar pose recovery algorithm with
regard to the translation, the tracker must be used to reliably obtain the rotation.

A video processed by our system is available at http://homes.esat.kuleuven.
be/~rtimofte. It shows our system tracking multiple objects of different types,
orientations and colors, with or without motion blur and occlusions. Our CPU
implementation of the detection phase runs at around 20fps on 640 × 480 images
while the GPU based tracker needs up to 20ms per object (on a 640× 480 image).
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Fig. 1.14. System performance while tracking a circle shaped sign over 60m, with just the 4 point

pose recovery (RPP) and with the tracker (PWP)
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Fig. 1.15. System performance while tracking a rectangle shaped sign over 60m, with just the 4
point pose recovery (RPP) and with the tracker (PWP)

1.9. Conclusions

In this chapter we reviewed the advances in driver assistance with respect to traffic
sign recognition and proposed a system that can track multiple traffic signs in 3D,
from a single view. By integrating accurate detections with 3D region based tracking
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Fig. 1.16. System performance while tracking a triangle shaped sign over 60m, with just the 4

point pose recovery (RPP) and with the tracker (PWP)

our system is robust to motion blur and occlusions, while still running in real time.
Such a system would require more, e.g. person and car 3D detection and tracking,
etc.
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