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Abstract

Driver assistance helps save lives. Accurate 3D pose
is required to establish if a traffic sign is relevant to the
driver. We propose a real-time system that integrates
single view detection with region-based 3D tracking of
road signs. The optimal set of candidate detections is
found, followed by AdaBoost cascades and SVMs. The
2D detections are then employed in simultaneous 2D
segmentation and 3D pose tracking, using the known
3D model of the recognised traffic sign. We demon-
strate the abilities of our system by tracking multiple
road signs in real world scenarios.

1 Introduction

Traffic signs are designed to help drivers reach their
destination safely, by providing them with usefull in-
formation. However, when road signs are missed or
missunderstood accidents happen. A recent statistic
shows that over 98% of car accidents happen because
the driver was distracted. By attracting the driver’s at-
tention to the traffic signs on the road many accidents
would be averted. As a result there has been much
work towards a fast and reliable traffic sign detection
and tracking system.

Most current work involves combining a detector
with a Kalman filter, like in [3, 8], or with a particle
filter, like in [5, 4]. These methods rely on a predictable
car motion model or reliable feature detectors. For ex-
ample in [6] and [3] the car is assumed to move in a
straight line and with constant velocity. As feature de-
scriptors, trackers usually use edges or some kind of
information extracted from the traffic sign shape. In [3]
the authors explicitly model geometric properties of the
traffic sign shape (i.e. a triangle shaped sign has to be
equilateral). This leads to a lack of robustness when

subjected to occlusions, deformations or motion blur.
In [5] the authors track circular signs and assume these
have a coloured border on a white interior and that clear
edges can be extracted. This approach would not scale
to differently shaped signs and is again vulnerable to
motion blur. A solution to some of these problems is re-
gion based tracking. Regions are more stable than edges
so tracking is more robust, and they are less affected by
occlusions or motion blur.

To our knowledge, with notable exceptions like [5]
and [10], most of previous road sign work was 2D. That
is the position of the traffic sign was tracked in the im-
age rather than in 3D space. In [5] the authors use in-
ertial sensors mounted on the car to help them obtain
an approximation of the 3D pose of the signs, with re-
spect to the car. Unfortunately this approach would fail
when the traffic sign does not point towards the car, like
in the case shown in Figure 1. Here the no right turn
sign does not have the same rotation as the inertial sen-
sor mounted on the car. An alternative method is pre-
sented in [10], where multiple views, 3D reconstruction,
and an Minimum Description Length based method are
used. Although a 3D pose is recovered, processing time
is very long - it is an offline method for 3D mobile map-
ping purposes.

Our approach 1 integrates a single view detection and
recognition step with a multiobject, model and region
based, 3D tracker. This has several advantages: (i) we
are able to obtain the full 3D pose of the traffic signs in
the image, accounting for the case in Figure 1, (ii) the
tracking is region based, making it robust to motion blur
and occlusions, (iii) because our tracker processes only
a small region in and around the detection we are able
to achieve real time performance.

The remainder of this paper is structured as follows:
we begin by presenting an overview of our algorithm in
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Figure 1. Importance of determining the
traffic sign orientation. The no right turn
sign does not point towards the car.

Section 2. In Section 3 we detail our single view detec-
tion and recognition step while in Section 4 we present
our 3D tracker. In Section 5 we include the results of
applying our system to several images and videos. We
conclude in Section 6.

2 Algorithm Overview
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Figure 2. Algorithm overview

An outline of our algorithm is shown in Figure 2. It
consists of two phases: first the single view detector is
ran on the image and the best detection for each object
is selected. Second, the 3D pose at the current frame
is predicted, based on the 2D detection and a constant
velocity motion model. The 2D detection bounding box
is converted to a 3D pose using a 4 point planar pose
recovery algorithm. The 3D tracker is then used to re-
fine the 3D pose, for each object in the image. If the
detection corresponds to a traffic sign the approximate
3D pose will be its initialisation.

3 Object Detection and Recognition

When a new frame is available we first use the object
detection and recognition algorithm of [10]. The single-
view detection phase consists of the following steps:

1) Candidate extraction - very fast preprocessing step,
where the optimal combination of simple (i.e. compu-
tationally cheap), adjustable extraction methods select
bounding boxes with possible traffic signs. This step
requires an automatic offline learning stage, where an
optimal subset of those extraction methods is learnt to
yield very few false negatives, while keeping the num-
ber of false positives in check.
2) Detection - Extracted candidates are verified further
by a binary classifier which filters out remaining back-
ground regions. It is based on the Viola and Jones Dis-
crete AdaBoost classifier [11]. Detection is performed
by cascades of AdaBoost classifiers, followed by an
SVM operating on normalised RGB channels, pyramids
of HOGs [2] and AdaBoost-selected Haar-like features.
3) Recognition - A hierarchy of SVM classifiers
splits the detections in six basic traffic sign subclasses
(triangle-up, triangle-down, circle-blue, circle-red, rect-
angle and diamond) and then another hierarchy of SVM
classifiers (for each subclass) assigns the traffic sign
type for the different candidate detections.

At this stage several detections might be available
for each object, as shown in Figure 2b. We perform the
non-maximum suppression using the energy function of
[1, 7] as the colour segmentation score. With b as the
bounding box we write:

P (b) =
∏
x∈Ω

(
He(a(x))Pf +

(
1−He(a(x))

)
Pb

)
(1)

Here Ω is the image domain, He is the smooth Heavi-
side function, x is the pixel in the image, a(x) equals 1
inside the bounding box and -1 outside and:

Pf =
P (yi|Mf )

ηfP (yi|Mf ) + ηbP (yi|Mb)
(2)

Pb =
P (yi|Mb)

ηfP (yi|Mf ) + ηbP (yi|Mb)
(3)

with ηf the number of foreground pixels, ηb the num-
ber of background pixels, yi the colour of the i-th pixel,
P (yi|Mf ) the foreground model over pixel values y and
P (yi|Mb) the background model. We use RGB images
and our models are histograms with 32 bin for each
channel, which are updated online, allowing for vari-
ations in illumination. When an object is first detected
we chose the detection with the highest SVM score, and
initialise P (yi|Mf ) and P (yi|Mb).

4 3D Initialisation and Tracking

The core of our tracking is the PWP3D algorithm
[7]. It assumes a known 3D model, a calibrated camera



and known foreground/background region statistics. A
level set embedding function is built from the contour of
the projection of the model and the posterior per-pixel
foreground/background probability is maximised as a
function of pose. The energy function that is minimised
is similar to the log of Equation 1:

E(Φ) = −
N∑
x∈Ω

log
(
He(Φ)Pf +

(
1−He(Φ)Pb

))
(4)

with the level set embedding function Φ replacing a(x).
The actual minimisation is done by computing the

derivatives of this energy function with respect to the
pose parameters and using gradient descent, as in [7].
This does have the disadvantage that convergence is not
guaranteed within the permitted number of iterations
i.e. more iterations would almost always lead to a better
solution. In our testing we noticed that an average of 15
iterations is enough for a good enough result.

The PWP3D tracker needs an initial 3D pose and val-
ues for the foreground / background membership proba-
bilities. Also, at each new frame, the 2D detections need
to be converted to (approximate) 3D poses to be com-
bined with the 3D tracker. In our case the objects can
be approximated with their planar counterparts, which
means we can use any one of several planar pose re-
covery algorithms currently available to convert the 2D
bounding box to a 3D pose. We use a current state-
of-the-art algorithm introduced in [9]. This algorithm
requires (at least) 4 3D-2D point correspondences. We
use the 4 corners of the detection bounding box as the
2D points and relate them to the 4 corners of the bound-
ing box enclosing the 3D model of object. An example
result is depicted in Figure 2d.

At each new frame, for all previously known ob-
jects, the new 3D poses (obtained from the 2D bounding
boxes) must be integrated with the tracker. To do this
we begin by defining a constant velocity motion model:

vitk = tk−1 − tk−2 virk = rk−1r
−1
k−2 (5)

where k is the current frame, k−1 is the previous frame,
t is the translation and r is the rotation quaternion from
the tracker. The velocity given by the 2D detections is:

viitk = uk − uk−1 viirk = pkp
−1
k−1 (6)

where u is the translation and p is the rotation quater-
nion, obtained from the detector by using the 4 point
planar pose recovery algorithm. The predicted pose for
the current frame becomes:

tk = tk−1 + αvitk + βviitk rk = rk−1qαv
i
rk
qβv

ii
rk

(7)

where k is the current frame, k−1 is the previous frame,
t is the translation from the tracker and u is the trans-
lation from the detector. The variables α, β, qα and qβ

are dependant on the distance between the object and
the camera. α and qα are inverse proportional to this
distance while β and qβ are proportional to it. Thus we
are able to give more importance to the motion model
when the object is closer to the car and vice versa.

Finally the predicted pose (tk, rk) is refined using
the tracker. The tracker could have been used alone
to obtain the pose changes from consecutive frames,
but this would have led to longer processing times and
would have increased the chance of loosing tracking.

We could have used a Kalman filter for a purely sta-
tistical fusion of the tracking data with the approximate
poses from the detector. A Kalman filter represents all
measurements, system state and noise as multivariate
Gaussian distributions. By iterating the tracker rather
than doing a purely statistical data fusion we make no
pretence on the type of these probability distributions.

5 Results

We tested our algorithm with a multitude of traffic
signs types and shapes. In Figure 3 (top) we show our
system tracking a pedestrian crossing sign and obtain-
ing a reasonably accurate pose even when the object is
far from the camera. It is possible to calculate the dis-
tance between the sign and the car, which could then be
used to automatically adjust the speed of the car.

In Figure 3 (bottom) we show our system tracking
multiple objects. At present the pose for each sign is es-
timated independently, though of course relative to the
camera each sign undergoes the same rigid transforma-
tion. We might expect improved performance were we
to introduce this coupling.

In Figure 4 we compare the performance of our sys-
tem, tracking a single sign over a distance of 70m (or 70
frames at 36km/s), with and without the 3D tracker. At
higher distances the object becomes only tens of pix-
els big so detection and tracking are prone to errors.
Higher resolution images would allow for the sign to
be detected and tracked earlier. The car was moving in
a straight line, with constant speed. Translation should
therefore change linearly, while rotation should remain
constant. Though there is little choice between using
the 3D tracker and using just the 4 point planar pose re-
covery algorithm with regard to translation the tracker
must be used to reliably obtain rotation.

A video processed by our system is available at
http://homes.esat.kuleuven.be/˜rtimofte . It shows
our system tracking multiple objects of different types,
orientations and colours, with or without motion blur
and occlusions. Our CPU implementation of the de-
tection phase runs at around 20fps on 640x480 images



Figure 3. Filmstrip showing 5 frames from a video tracking a pedestrian crossing sign (top)
and tracking multiple traffic signs (bottom)
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Figure 4. System performance while tracking a sign over 70m, with just the 4 point pose recov-
ery (RPP) and with the tracker (PWP)

while the GPU based tracker needs up to 20ms per ob-
ject (on a 640x480 image).

6 Conclusions

In this work we proposed a system that can track
multiple traffic signs in 3D, from a single view. By inte-
grating accurate detections with 3D region based track-
ing our system is robust to motion blur and occlusions,
while still running in real time. Future work could add
person and car 3D detection and tracking to create a
complete driver assistance system.
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