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Abstract Several applications require information about street
furniture. Part of the task is to survey all traffic signs. This
has to be done for millions of km of road, and the exercise
needs to be repeated every so often. We used a van with
8 roof-mounted cameras to drive through the streets and
took images every meter. The paper proposes a pipeline for
the efficient detection and recognition of traffic signs from
such images. The task is challenging, as illumination con-
ditions change regularly, occlusions are frequent, sign posi-
tions and orientations vary substantially, and the actual signs
are far less similar among equal types than one might ex-
pect. We combine 2D and 3D techniques to improve results
beyond the state-of-the-art, which is still very much preoc-
cupied with single view analysis. For the initial detection
in single frames, we use a set of colour- and shape-based
criteria. They yield a set of candidate sign patterns. The se-
lection of such candidates allows for a significant speed up
over a sliding window approach while keeping similar per-
formance. A speedup is also achieved through a proposed
efficient bounded evaluation of AdaBoost detectors. The 2D
detections in multiple views are subsequently combined to
generate 3D hypotheses. A Minimum Description Length
formulation yields the set of 3D traffic signs that best ex-
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Fig. 1 3D mapped traffic signs in a reconstructed scene.

plains the 2D detections. The paper comes with a publicly
available database, with more than 13 000 traffic signs an-
notations.

Keywords Traffic sign recognition · Computer vision-
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Description Length · Integer Linear Programming

1 Introduction

Mobile mapping is used ever more often, e.g. for the creation
of 3D city models for navigation, or to turn old paper maps
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a) Within-class variability:

b) Bad standardisation:

c) Among-class similarity:

Fig. 2 The within-class variability and between-class similarity of
traffic signs are high. The five first rows show instances of the same
class. The last two rows show traffic signs from two distinct classes
(first 3 columns vs. last 2 columns).

into digital databases. Several of those applications need the
locations and types of the traffic signs along the roads, see
Fig. 1. The paper describes an efficient pipeline for the de-
tection and recognition of such signs, from mobile mapping
data.

Over the last decade, the computer vision community
has largely turned towards the recognition of object classes,
rather than specific patterns like traffic signs. However, it
would be a mistake to believe that their recognition is not
extremely challenging. To be useful, both false positive and
false negative rates have to be very low. That is why cur-
rently much of this work is still carried out by human op-
erators. There are all the traditional problems of variations
in lighting, background, pose, and of occlusions by other
objects, see Fig. 2a. In addition, these signs are often not
as precisely standardized as one would expect (this also de-
pends on the country; our dataset was acquired in Belgium),
see Fig. 2b.

The traffic sign detection problem is traditionally solved
by one of the following approaches:

(i) the selective extraction of windows of interest, followed
by their classification [14,17,19,3].

(ii) exhaustive sliding window based classification [22,21,
1].

Approach (i) exploits the saliency traffic signs exhibit
by design. A small number of interest regions is selected in
the images, through fast and cheap methods. These interest
regions are then subjected to a more sophisticated classifica-
tion. Unfortunately, such approach risks to overlook traffic
signs if their assumed saliency has been compromised. See
Fig. 12 for some examples.

Approach (ii) considers all regions or ‘windows’ in the
image. As the number of candidate windows is huge, the
classification process easily becomes intractable [22]. Ad-
ditional constraints like minimum and maximum window
sizes help to prune that number, at the expense of the num-
ber of times the same sign can be detected in image sets
of the type we use. Typically, a cascaded classification is ap-
plied [1], such that more time is invested in the more promis-
ing windows and the vast majority can again be discarded
quickly. A single sign often results in multiple detections in
overlapping windows, such that a non-maximum suppres-
sion is needed as a post-processing step.

In this paper, we contribute to the traffic sign detection
problem in the following ways:

Contribution 1: Observing that approaches (i) and (ii)
have complementary strengths, we propose their combined
use.

Contribution 2: The candidate window selection in ap-
proach (i) is usually rather ad-hoc, with thresholds manually
chosen. We propose an off-line learning process which au-
tomatically selects features and corresponding thresholds.

Contribution 3: We do not stop at single view detection
and recognition, but add multi-view 3D localisation. Apart
from the value of 3D localisation per se, the 3D analysis
assists in weeding out false detections while keeping their
subset that jointly best explain the observations in the differ-
ent views.

Contribution 4: An efficient bounded evaluation for lin-
ear Discrete AdaBoost-like classifiers [26] is proposed with-
out trading off the performance.

Contribution 5: Since there has been no publicly avail-
able database which could serve as a statistically relevant
benchmark, we make available such database, as described
in Section 7.1 and found at http://homes.esat.kuleuven.
be/˜rtimofte/traffic_signs/. It contains over 13
000 traffic sign annotations, for more than 145000 images
taken on Belgian roads. The image resolution is 1628 ×
1236 pixels.
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2 State-of-the-art

2.1 Single view detection

The results of traffic sign detection and recognition thus far
– often obtained under simpler conditions than in our exper-
iments – testify to the high difficulty of the task.

Lafuente et al. [14] had 26% of false negatives for 3
false positives per image. Maldonado et al. [17] used image
thresholding followed by SVM classification. They mention
that every traffic sign has been detected at least twice in a
total of 5000 video frames, with 22 false alarms. Detection
rates per view are not given. In both these methods, thresh-
olds are manually selected. Nunn et al. [21] showed that
constraining the search to road borders and an overhang-
ing strip significantly reduces the number of false positives,
while false negatives are at 3.8%. In this preselection step,
they still found 16494 false positives per image on average
using that geometric restriction. All these systems were only
tested on highways.

The following systems have also been demonstrated off
the highway. Pettersson et al. [22] restricted the detection to
speed signs, stop signs and give-way signs. They got 10−4−
10−5 false positive rates for 1% false negatives, but fail to
mention the number of sub-windows per image. Moutarde
et al. [19] reported no false positives at all in a 150 min-
utes long video, but with 11% of all traffic signs left un-
detected. Ruta et al. [24] combine image colour threshold-
ing and shape detection, achieving 6.2% false negatives. The
number of false positives is not mentioned. Broggi et al. [3]
proposed a system similar to [17] where the SVM is replaced
by a neural network. No quantitative results are presented.

Although some papers mention the possibility to track
the traffic signs, the actual analysis reported in all these pa-
pers is based on per-image detection. This is different for the
following papers, which consider fused recognition based on
multiple detections, as in our case.

In [1] a real-time system for circular traffic signs is pro-
posed that uses a sliding window method. A cascaded Ad-
aBoost detector is trained over Haar-like features defined for
each colour channel. The detections are tracked and fused
for recognition. A 85% recognition rate is reported for one
false positive in every 600 frames (640 × 480 pixel resolu-
tion). Ruta et al. in [25] propose a real-time circular traf-
fic sign recognition system that employs colour filtering for
red and blue, quad-tree based region of interest extraction,
a Hough transform detector with confidence-weighted mean
shift refinement, regression tracking based on learning affine
distortions over time for specific sign instances, and an Ad-
aBoost variant (SimBoost) for classification. For 720× 540
pixels videos, they report 12 missclassified signs out of 85
correct detected/tracked traffic signs while not detecting 14
signs and having 10 false detections.

Results so far are not good enough to roll out such meth-
ods at a large, urban scale. Both the numbers of false posi-
tives and false negatives are too high, or methods are based
on assumptions that no longer hold.

Whereas the majority of the previous contributions work
with a rather small subset of sign types, our system handles
62 different types of signs. Moreover, the authors usually fo-
cus on highway images, whereas our dataset mainly contains
images from smaller roads and streets. This poses a more
challenging problem as signs tend to be smaller, have more
often been smeared with graffiti or stickers, suffer more from
occlusions, are often older, and are visible in fewer images.
Also, several sign types never appear along highways.

2.2 Multi-view detection

Given the aforementioned limitations with single view meth-
ods, it stands to reason to exploit the fact that, typically, a
traffic sign is visible in more than one image. Indeed, with
the usual mobile mapping vans, multiple, synchronised im-
ages are taken a few times per second. This delivers such
redundancy and, also, 3D information.

In mainstream computer vision, approaches have recently
emerged that try to exploit contextual information. A good
example is to use the estimated position of the ground plane,
thereby introducing a weak notion of 3D scene layout [11].
This was found to be very beneficial. In a similar vein, Wo-
jek and Schiele [31] went further in coupling object detec-
tion and scene labeling approaches. Yet, these approaches
still work from a single image. In a mobile mapping setting,
a multi-view approach comes natural and can ease such con-
textual analysis through the explicit 3D information it pro-
vides.

As a second strand of relevant research, some recent
techniques have focused on detecting and recognizing object
related subsets of 3D point clouds [4,20,10]. 3D informa-
tion is combined with motion, colour, and other data. These
systems, which have also been mainly targeting urban scene
segmentation and labeling, show remarkable performance.
Yet, smaller objects like road signs are among the more dif-
ficult ones to handle.

It thus stands to reason to exploit information coming
from multiple images. Both the high resolution available in
each of those images and the 3D information that can be ex-
tracted from them, seem vital inputs. Our method is based
on the combination and final selection of detections in a
single 3D space. Some earlier traffic sign detection meth-
ods may have been aggregating detections from multiple
views as well, but in different and less exacting ways. e.g.
through tracking [1,25,23,27], grouping using GPS infor-
mation, consistency checks in stereo camera imagery, and/or
active vision with high-res regions of interest detected within
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a low-res camera image [12]. The redundant information
coming from the different views is not compiled into a single
3D space, obtained from all views as in our approach.

As a matter of fact, this begs the question what adding
additional sensors like laser scanners could do. In [13] such
an integrated mobile mapping system is described, but in the
automatic mode, the false detection rate is still high and the
localisation precision is not better than sub-meter. Adding
laser scanning is no miracle cure per se. Before we describe
our system in more detail, it is useful to also review litera-
ture on the combination of multi-view based detection and
tracking.

Fleuret et al. [9] use a multi-view probabilistic occu-
pancy map for people detection and tracking. They globally
optimize each individual trajectory separately over long se-
quences. In contrast, Leibe et al. [15] employ a globally op-
timal solution for all detections and trajectories at once. The
solution is given by a Minimum Description Length (MDL)
formulation that inspired also our 3D solution. An impor-
tant difference lies in the added value of ground plane and
space occupancy constraints in their system, however. Nei-
ther are of such great help in our traffic sign application. The
signs are positioned at varying positions and their volumes
are negligible.

Similar challenges are faced by the mobile mapping sys-
tem in [5], which was designed to find streetlights. Like
ours, this system employs multiple cameras mounted on a
van, where 2D detections are used to generate 3D hypothe-
ses and their validation is based on back-projection into the
images. These authors did use a ground plane constraint and
an occupancy map, but at the cost of making strong assump-
tions about the height above ground and the presence of
rather thick poles on which the lamps are fixed. The recent
work from [28] uses the same settings as we do, for the 3D
mapping of manhole covers. The main assumption is that the
manholes are lying on the ground and, thus, the images are
projected onto the ground plane and the problem thereby is
greatly simplified.

We have to cover cases with signs also fixed to structures
like walls or bridges, at rather unpredictable heights. For the
aforementioned reasons, we do not make use of these con-
straints. Also, we formulate criteria for the optimal selection
of the basic features (used for detection) and the resulting
3D hypotheses. Moreover, our problem setting imposes the
detection of far more object classes, which are typically of a
smaller size.

This paper is an extension to our previous work [29].
It contains a more detailed description of the ideas and al-
gorithms, a comparison with a standard sliding window ap-
proach as well as with a state-of-the-art part-based approach [8],
additional justifications of the design choices made, improved
results, as well as the link to the published training and test-
ing datasets.

The structure of the remainder of the paper is as follows.
Section 3 first gives an overview of the different steps taken
by the system. Then, we focus on the most innovative as-
pects. Section 4 explains the initial selection of good candi-
dates within the individual images. Section 5 introduces an
efficient bounded evaluation of linear AdaBoost-like clas-
sifiers, which speeds up the system. Section 6 explains the
MDL formulation for 3D traffic sign localisation. Section 7
describes the experimental setup and the results. Section 8
discusses practical issues and comments on the generality
of the system. Section 9 draws conclusions.

3 Overview of the system

Before starting with the description of how the traffic signs
are detected in the data, it is useful to give a bit more in-
formation about our data capturing procedure. Like for most
large-scale surveying applications, a van with sensors is driven
through the streets. In our case, it had 8 cameras on its roof:
two looking ahead, two looking back, two looking to the left,
and two to the right. There was an overlap between the fields
of view of neighbouring cameras. About every meter, each
of the cameras simultaneously takes a 1628 × 1236 image.
The average speed of the van is ∼ 35km/h. The cameras
are internally calibrated and also their relative positions are
known. Structure-from-motion combined with GPS yields
the ego-motion of the van.

We do not propose on-line driver assistance but an off-
line traffic sign mapping system, performing optimization
over the captured views. Only traffic signs captured at a dis-
tance of less than 50 meters are considered. The proposed
system first processes single images independently, keeping
the number of false negatives (FN - the number of missed
traffic signs) very low and the number of false positives (FP
- the number of accepted background regions) reasonable.
Single-view traffic sign detections in conjunction with the
multi-view scene geometry subsequently allows for a global
optimization. This optimization simultaneously performs a
3D localisation and refinement. Since we deal with hundreds
of thousands of high-resolution images the approach is to
quickly throw out most of the background, and to then in-
vest increasing amounts of time on whatever patterns sur-
vive previous steps.

We now sketch the different steps of the single-view and
multi-view processing pipelines. The next two sections then
give a more detailed account of these pipelines, resp.

The single-view detection phase consists of the follow-
ing steps:
1) Candidate extraction - very fast preprocessing step, where
an optimized combination of simple (i.e. computationally
cheap), adjustable extraction methods selects bounding boxes
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Fig. 3 Haar-like features used in our implementation.

with possible traffic signs. This step requires an automatic
off-line learning stage, where an appropriate subset of fea-
tures and corresponding decision rules is selected. They should
yield very high detection rate (FN very low), while keep-
ing the number of false positives in check. This part of the
pipeline is described in more detail in Section 4.
2) Detection - Extracted candidates are verified further by a
binary classifier which filters out remaining background re-
gions. It is based on the well known Viola and Jones [30]
Discrete AdaBoost classifier [26]. The 6 Haar-like patterns
used are shown in Fig. 3. Detection is performed by cas-
cades of AdaBoost classifiers, followed by an SVM operat-
ing on normalized RGB channels, pyramids of Histogram
of Oriented Gradients(HOGs) [2] and AdaBoost-selected
Haar-like features. The detection time is reduced by using
an efficient bounded evaluation of the AdaBoost classifiers,
further explained in Section 5.
3) Recognition - Six one-against-all SVM classifiers se-
lect one of the six basic traffic sign subclasses (triangle-
up, triangle-down, circle-blue, circle-red, rectangle and dia-
mond) for the different candidate traffic signs. They work on
the RGB colour channels normalized by the intensity vari-
ance.

The multi-view phase consists of the following steps:
4) Multi-view hypothesis generation - We search for possi-
ble correspondences among the final, single-view candidates
in the different views. The search is restricted to a volume
with a predefined radius in 3D space. Every geometrically
and visually consistent pair is used to create a 3D hypothe-
sis. Geometric consistency amounts to checking the position
of the back-projected 3D hypothesis against the 2D image
candidates. Visual consistency gives a higher weight to pairs
which are more probable to be of the same basic shape.
5) Multi-view MDL hypothesis pruning - The Minimum
Description Length principle is used to select the subset of
3D hypotheses which best explains the overall set of 2D
(i.e. single-view) candidates. A by-product of the MDL opti-
mization is quite a clean set of 2D candidates corresponding
to each particular 3D hypothesis. These candidates allow for
3D hypothesis position refinement. Usually, steps 4) and 5)
are iterated. More details are given in Section 6.
6) Multi-view sign type recognition - The collected set of
2D candidates for each 3D hypothesis is classified by an
SVM classifier. These classifications then jointly vote on the
final type assigned to the hypothesis.

Original Thresholded Connected Extracted
image image I(T ) components bound. boxes

Fig. 4 Colour-based extraction method for threshold T =
(0.5, 0.2,−0.4, 1.0)>

Occlusion Occlusion Peeled Dirty

Fig. 5 Not threshold separable traffic signs. There are still traffic
signs which are not well locally separable from background; therefore
shape-based extraction is used.

4 Single-view candidate extraction

The simplest extraction method often used for traffic sign
detection is extraction of connected components from a thresh-
olded image, an idea already used in [17,3]. The principle is
outlined in Fig. 4. The thresholded image is obtained from a
colour image, with colour channels (IR, IG, IB), by appli-
cation of a colour threshold T = (t, a, b, c)>:

I(T ) =

{
1 a · IR + b · IG + c · IB ≥ t
0 otherwise

(1)

Authors often manually select two to five thresholds,
which are expected to extract all traffic signs. However, we
experimentally observed that under variable illumination con-
ditions and in the presence of a complex background such
extraction method is insufficient.

Since there typically is no single threshold performing
well by itself, it is necessary to combine regions selected
by different thresholds T = {T1, T2, . . . }, in the sense of
adding regions (OR-ing operation). Then, regions passed on
by any threshold are going to the next stage, i.e. detection.
The more thresholds are used the lower FN can be made but
the higher FP risks to get, and the higher the computational
cost will be.

Partially occluded, peeled or dirty traffic signs also should
pass the colour test. Therefore, this cannot be made too re-
strictive. Examples are shown in Fig. 5. That is why we also
employ shape information to further refine the candidates.

Section 4.1 explains how the set of colour thresholds
are learned and how, starting from those, the colour-based
candidates are extracted. Section 4.2 then describes a shape-
based Hough transform. This takes the borders of the colour-
based candidates as input.
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Original Extracted Bounding Rescaled
image region box bound. box

Fig. 6 Demonstration of the extended threshold. The object is not
well locally separable from the background, because bricks have a
colour similar to that of the red boundary. Therefore the inner white
part is extracted and the resulting bounding box is rescaled T =
(0.1,−0.433,−0.250, 0.866, 1.6, 1.6)>.

4.1 Colour-based candidate extraction

Given thousands of possible colour thresholds, we search for
the optimal subset T of such thresholds, given some crite-
rion. Since for most interesting such criteria the problem is
NP-complete, we formulate our search as an Integer Linear
Programming problem. We have experimentally found that
finding the real optimum takes several hours, but that ILP,
due to the sparsity of the constraints, yields a viable solution
within minutes.

The most straightforward criterion is to search for a trade-
off between FP and FN.

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T )), (2)

where FP(T ) stands for the number of false positives and
FN(T ) for the number of false negatives, resp., of the se-
lected subset of thresholding operations T measured on a
training set. The real number κ1 is a relative weighting fac-
tor. In order to avoid overfitting and also to keep the method
sufficiently fast, we introduce an additional constraint on the
cardinality card(T ) of the set of selected thresholds. This
can be either a hard constraint card(T ) < ω0 or a soft con-
straint as in:

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T ) + κ2 · card(T )) (3)

We achieved better results with the soft constraint, but im-
posing a hard constraint may be necessary if the running
time is an issue. Since accuracy, defined as the average over-
lap between ground truth bounding boxes with extracted bound-
ing boxes, is important, we also add a term which increases
the penalty for inaccurate extractions:

T ∗ = arg min
T

(FP(T ) + κ1 · FN(T )

+κ2 · card(T )− κ3 · accuracy(T )) (4)

Scalars κ1, κ2 and κ3 are learned parameters which we esti-
mate by cross-validation. Reformulations of problems (2,3,4)
into the Integer Linear Programming form are described in
the Appendix.

Original Extracted Hough Refined
image region accumulator bound. box

Fig. 7 Shape-based extraction principle. The border of the colour-
based extracted region (blue) votes for different shapes in a Hough
accumulator. The green bounding box corresponds to the maximum.

Occasionally it happens that the contour of the traffic
sign cannot be separated from the background due to colour
similarity. See for example Fig. 6, where the rim of the sign
is too similar in colour to the background. Fortunately, many
traffic signs have also some inner contours (e.g. the white
inner part of the sign in Fig. 6, can be separated rather eas-
ily). This inner part can often define the traffic sign’s out-
line with sufficient accuracy. We therefore introduce the ex-
tended threshold

T = (t, a, b, c︸ ︷︷ ︸
T

, sr, sc)> (5)

which consists of the original threshold T and vertical resp.
horizontal scaling factors (sr, sc) to be applied to the bound-
ing box which is extracted with the original threshold. Such
extended threshold - in the sequel simply referred to as thresh-
old - can reveal a traffic sign, even if its rim poses problems.

Changing illumination poses another problem to thresh-
olding. One could try to adapt the set of thresholds to the
illumination conditions, but it is better to add robustness to
the thresholding method itself. We adjust the threshold to be
locally stable in the sense of Maximally Stable Extremal Re-
gions (MSER) [18]. Instead of directly using the bounding
box as extracted by the learned threshold (t, a, b, c, sr, sc),
we use bounding boxes from MSERs detected within the
range [(t − ε, a, b, c, sr, sc); (t + ε, a, b, c, sr, sc)], where ε
is a parameter of the method. Since MSERs themselves are
defined by a stability parameter ∆, this ‘TMSER’ method is
parametrized by two parameters (ε,∆).

4.2 Shape-based candidate extraction

Traffic signs are meant to be well distinguishable by both
their colour and shape. Each of the above thresholds (with
scaling and TMSER extensions) let pass a series of con-
nected components, i.e. regions (usually thousands per im-
age). To these regions we now apply an additional shape-
filter, akin to the generalized Hough transformation. The
principle is outlined in Fig. 7.

In general the image shapes of the signs will be affinely
transformed versions of the actual shapes. Using the gener-
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Fig. 8 Threshold-specific fuzzy templates. Selected subset
{23, 12, 28, 32} from 44 fuzzy-templates.

alized Hough transformation in its traditional form would re-
quire to detect every single shape in 5D (or even 6D) Hough
accumulator spaces. Apart from the computational load in-
volved, working in such vast spaces is almost guaranteed
to fail. Instead, we learn fuzzy templates which incorporate
small affine transformations and shape variations and we de-
termine explicitly only the position and scale in a 3D Hough
accumulator.

The most straightforward fuzzy templates could be learned
as a probability distribution of boundaries of colour-based
extracted regions for specific signs. Such approach, how-
ever, would require as many templates as there are differ-
ent shapes. A more parsimonious use of templates is pos-
sible, however. Since the learned thresholds (Eq. (5)) are
usually specialized for some specific basic shapes of traffic
signs, we learn threshold-specific fuzzy templates, which al-
low the system to try only one template per extracted bound-
ary. Fig. 8 gives examples. For each threshold, we first col-
lect boundaries of extracted regions which yield correct bound-
ing boxes. Then the scale is normalized (aspect ratio is pre-
served) and the probability distribution of the shapes ex-
tracted by the threshold is computed. Eventually, the fuzzy
template is estimated as the point reflection of the probabil-
ity distribution, because voting in the Hough accumulator
requires the point-reflected shape. For example, the second
fuzzy template in Fig. 8 corresponds mainly to traffic signs
which are circular or upward-pointing triangular, whence
the downward-pointing triangular part of the template (in
addition to the circular part).

When a boundary is extracted by a threshold, the threshold-
specific fuzzy template is used to compute its generalized
Hough transformation. A bounding box corresponding to
the maximum in the three dimensional Hough accumulator
(2 positions and 1 scale) is reported if the maximum is suf-
ficiently high. The role of the shape selection step mainly
consists of selecting a sub-window from a colour-defined
bounding box, with the right shape enclosed. In order to
avoid replacement of correctly extracted bounding by a bound-
ing box corresponding to a small sub-boundary which has
more exact shape than the original one, the original bound-
ing box is also kept.

Fig. 9 Shape-based extractable but colour threshold inseparable
traffic signs - the ground truth is delineated by a red rectangle, the best
shape-based detection is shown in yellow and the best colour-based
one in green.

5 Efficient bounded evaluation of AdaBoost classifiers

Here we show a simple way to speed up the evaluation of lin-
ear combinations of the form used in our Discrete AdaBoost
classifier implementation.

The result of the AdaBoost algorithm is a ‘strong’ clas-
sifier constructed as a linear combination

f(x) =
L∑
t=1

αtht(x) (6)

of L ‘simple’‘weak’ binary classifiers/features ht(x) : X →
{−1,+1}, where αt are the weights andX is the space (im-
age) from where x is sampled. The thresholded decision of
the final classifier is

H(x) = sign{f(x)− θ} (7)

where θ is the threshold.
Since the values of ht have upper and lower bounds, the

partial sums of terms in Eq. (6) are also bounded. Let ht =
+1 and ht = −1 be the upper and lower bounds for ht. We
observe that in order to evaluate H(x), we do not have to
compute all ht, but we can stop after computing s terms if

s∑
t=1

αtht(x) +
L∑

t=s+1

αtht(x) < θ (8)

implying that f(x) lies below the threshold θ even if all the
remaining terms (s + 1, . . . , L) are at their upper bounds.
Also, we can stop after s terms if

s∑
t=1

αtht(x) +
L∑

t=s+1

αtht(x) > θ (9)

in which case f(x) would be above the threshold θ even
if all the remaining terms (s + 1, . . . , L) are at their lower
bounds.

The sums for upper and lower bounds do not depend on
the actual value of ht(x) and are precomputed.
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By dropping the evaluation of the whole linear combina-
tion and considering the bounded intervals we already get a
decrease in computation time for our AdaBoost cascades of
20% up to 30%.

If we first evaluate the terms that contribute the most
we get a further computation time reduction. The terms that
have the strongest influence on f(x) are those with the largest
values for αt(ht(x)− ht(x)).

Since the weights, the upper and lower bounds are known
and fixed in our case, we can first sort the terms in descend-
ing order according to their αt(ht(x) − ht(x)) values (or
just αt values in our case), and afterwards compute the par-
tial sums for the worst and most favorable cases. By sorting
first, we experimentally obtain a decrease in computation
time of up to 40%.

Another way of exploiting the linear combinational na-
ture of our classifiers is to employ the training material and
to extract frequencies for each term for each particular value
or value interval. Thus, the evaluation order will be given by
using these frequencies coming from the training material,
and the computation time reduction would be obtained along
with an estimated probability. This idea is not explored here.

Note that the methods applied here have no impact on
the decision values of the considered classifiers but only
(in general) improve the computational time. Also, similar
methods are applicable to other classifiers based on a linear
combination of local, weak decisions.

6 Multiple-view MDL 3D optimization

Single-view detection and recognition is just a preprocess-
ing stage, and the final decision results from global opti-
mization over multiple views, based on the Minimum De-
scription Length principle (MDL). Given the set of images,
single-view detections, camera positions and calibrations,
MDL searches for the smallest possible set of 3D hypothe-
ses which sufficiently explains all detected bounding boxes.
In other words, if a set of detected bounding boxes satisfies
some geometrical and visual constraints, then all of these
bounding boxes are explainable by one 3D traffic sign. Next,
we explain how MDL is used for that purpose.

We start by generating an overcomplete set of hypothe-
ses: For every single 2D detection we collect every geo-
metrically and visually consistent correspondence in another
image and use this pair to generate a 3D hypothesis, see Fig-
ure 10. Geometrical consistency means that the correspond-
ing detection lies on the epipolar line for the camera pair. Vi-
sual consistency means that their recognized subclass types
are the same. This step, of course, generates a high num-
ber of 3D hypotheses, including false positives and mul-
tiple, close but seemingly different 3D reconstructions for
the same sign (3D reconstructions are generated from image

Fig. 10 MDL principle - the corresponding pairs generate 3D hy-
potheses, from which can be picked up (green) a subset (left) or the
best/smallest subset (right) in the MDL sense that explains the 2D de-
tections.

pairs). The following MDL optimization selects the simplest
subset which best explains the 2D detections. For some fur-
ther explanation, see Fig. 10, right.

For each 3D hypothesis we will have a 3D position of
the centre of the traffic sign, its fitted plane and thus an ori-
entation (and sense), and estimated probabilities to belong to
each of basic shapes. For a specific hypothesis h we gather
the set of supporting 2D candidates which have a coverage1

with the 2D projection of h above 0.05 and for which the
candidate camera and the hypothesis are facing each other
(rather than the camera observing the backside of the sign),
at less than 50 meters. Let the set of 2D candidates be Ch.

In order to define the MDL optimization problem, we
first compute savings (in coding length) for every single 3D
hypothesis h as follows:

Sh ∼ Sd − k1Sm − k2Se (10)

where Sd is the part of the hypothesis which is explained by
the supporting candidates (Eq. (12)), i.e. a weighted sum of
coverages as explained shortly. Sm is the cost of coding the
model itself (a constant penalty in our case), while Se repre-
sents those parts that are not explaining the given hypothesis
(Eq. (13)), and k1, k2 are weights (as in [15]). For each can-
didate c we have a 2D projection of h, whence the coverage
Oc,h of the projected h and the candidate c. The coverage as-
sures independence of the size of supporting candidates. The
estimated probability that the candidate explains the hypoth-
esis is taken as the maximum of the probabilities of them
sharing a specific basic shape:

p(c, h) = max
t∈{4,5,◦,�,♦}

pt(c)pt(h) (11)

Sd =
∑
c∈Ch

Oc,hp(c, h) (12)

Se =
∑
c∈Ch

(1−Oc,h)p(c, h) (13)

1 Coverage is the ratio between the intersection and the union of
areas.
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Table 1 Belgian Traffic Signs Dataset (BelgiumTS). To the traffic
sign (TS) annotations corresponds a number of physically distinct TS.
On average we have 3 views/annotations for each physical TS. 3D Test-
ing contains the TS annotations along with the image/frame sequences
where those appeared, and each image is provided with camera param-
eters and pose. The TS annotations from 3D Testing form a subset of
2D Testing. non-TS stands for images without traffic sign annotations.

BelgiumTS TS annot. Distinct TSs other images
Training 8851 3020 16045 non-TSs
2D Testing 4593 1545 583 non-TSs
3D Testing 1625 552 121632
Total 13444 4565 16628 non-TSs

We assume that one candidate can explain only one hypoth-
esis. Interaction between any two hypotheses hi and hj that
get support from shared candidates C = Chi

⋂
Chj should

be subtracted and is given by

Shi,hj
=

∑
c∈C

min
t∈{i,j}

(Sdt
(c)− k2Set

(c)) (14)

where Sdt(c) and Set(c) are constrained to the contribution
of c for ht

Leonardis et al. [16] have shown that if only pairwise in-
teractions are considered, then the Integer Quadratic Prob-
lem (IQP) formulation gives the optimal set of models:

max
n

nTSn, S =

 s11 · · · s1M...
. . .

...
sM1 · · · sMM

 (15)

Here, n = [n1, n2, · · · , nM ]T is a vector of indicator vari-
ables, 1 for accepted and 0 otherwise. S is the interaction
matrix with sii being the savings, sii = Shi

, while the oth-
ers are representing the interaction costs between two hy-
potheses hi and hj , sij = sji = −0.5Shi,hj . The restriction
to pairwise interactions does not fully cater for situations
where more than 2 hypotheses affect the same image area.

7 Experiments

7.1 Ground truth data

We have collected ground truth data used for this paper. This
database, the Belgian Traffic Signs Dataset (BelgiumTS), is
publicly available at: http://homes.esat.kuleuven.
be/˜rtimofte/traffic_signs/. The dataset contains
13444 traffic sign annotations in 9006 still images corre-
sponding to 4565 physically distinct traffic signs visible at
less than 50 meters from the camera. The dataset includes
challenging samples as shown in Fig. 2.

Table 1 summarises the most important information about
this dataset. It is split into different subsets, corresponding
to the rows in the table. For each subset, we indicate the

number of traffic sign annotations (2nd column), the num-
ber of different signs these correspond to (3rd column), and
the number of number of ‘background’ images without traf-
fic signs (4th column).

The first row describes the Training subset. The annota-
tions therein have been used to train for traffic sign detec-
tion, segmentation, and recognition. As negative examples,
we use 16045 ‘background’ images, which contain no traffic
signs. The 2D Testing subset was used for the validation of
the detection. Images were handpicked, so that the majority
contains traffic signs. Again, a number of background im-
ages without any signs were added. The 3D Testing subset
contains continuous sequences of images (8 camera images
per meter of road), i.e. with lots more images in between
those where traffic signs are visible. This dataset was used
for the full pipeline of detection, recognition, and localisa-
tion. The 3D Testing traffic sign annotations form a subset
to those for 2D Testing. Yet, in total it contains many more
images than 2D Testing, i.e. 121632 images from the 8 cam-
eras. All of these come with camera poses and internal cali-
brations.

To ease the use of the dataset for classification bench-
marking, we provide a subset called BelgiumTSC (Belgium
TS for Classification) with 4591 cropped training samples
and 2534 cropped testing samples. These correspond to the
original BelgiumTS Training and 2D Testing parts but re-
stricted to only 62 traffic sign types as used also in this work.

7.2 Single-view evaluation

The Training part of BelgiumTS (Table 1) is used for learn-
ing the suitable candidate extraction methods as well as for
training the AdaBoost cascades and the SVM classifiers.
To learn the SVM classifier, Statistical Pattern Recognition
Toolbox2 is used. The 2D Testing part is used for assessing
the performance. Our current method has only been trained
for 62 traffic signs classes. As a result, the number of used
annotations in testing drops to 2571, corresponding to 859
physically distinct traffic signs.

The detection and extraction errors (Table 2) are eval-
uated according to two criteria: either demanding detection
every time a sign appears (FN-BB), or only demanding it is
detected at least once (FN-TS). On average, a sign is visi-
ble in about 3 views. When False Negatives are mentioned
in the literature, it is usually FN-TS which is meant, where
the number of views per sign is often even higher (high-
way conditions). We considered a detection to be successful
if the coverage ≥ 0.65, which approximately corresponds
to the shift of a 20 × 20 bounding box by 2 pixels in both
directions. Note that some of our detected signs are quite

2 http://cmp.felk.cvut.cz/cmp/software/
stprtool/
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Table 2 Summary of achieved results in single-view detection. Meaning of the above used abbreviations is the following colour means method
described in Section 4.1, TMSER stands for TMSER(ε,∆) = TMSER(0.1, 0.2), shape is Section 4.2. FN-BB means false negative with
respect to bounding boxes, FN-TS means false negative with respect to traffic signs. The graph depicts the detection performance for 2 candidate
extraction settings: Extr1 and Extr4.

FN-TS FN-BB FP per
[%] #/859 [%] #/2571 2MP img

Extr1 (colour) 0.7% 6 1.1% 29 3 281.8
Extr2 (colour+TMSER) 0.7% 6 1.1% 28 3 741.7
Extr3 (colour+shape) 0.5% 4 0.7% 17 5 206.2
Extr4 (colour+TMSER+shape) 0.5% 4 0.7% 17 5 822.0
Det + Extr1 2.3% 20 4.0% 103 2
Det + Extr4 1.9% 16 3.2% 82 2
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small, with the smallest 11×10. Approximately 25% of non-
extracted bounding boxes were smaller than 17 × 17, most
of the others were either taken under oblique angles and/or
were visually corrupted (e.g. covered by a sticker, heavily
occluded, etc.).

Table 2 shows results of both the candidate extraction
(still with an appreciable number of FP, see first four rows)
and the final detection (i.e. candidate extraction followed
by AdaBoost detector and SVM, see last two rows). The
ROC curve in Table 2 compares the FN-BB/FN-TS achiev-
able with our pure colour-based extraction method to that
with our combined (colour+TMSER+shape)-based extrac-
tion method. The shape extraction significantly increases the
number of false positives (see for example 4th row in the ta-
ble). The reason for is that we keep both the original colour
bounding boxes and add all bounding boxes that reflect a
good shape match. Combined extraction lowers FN, how-
ever. Fig. 9 shows traffic signs that could not be detected
completely with the colour thresholds, but which could then
still be extracted based on their shape.

7.3 Sliding window comparison

We compare the pipeline outlined so far with a sliding win-
dow approach. For the latter, we train Discrete AdaBoost
cascades directly on sampled subwindows from the Training
data (see Table 1). The parameters for sliding window are:
350 pixels minimum window size, 4 aspect ratios - (0.5,0.75,1.0,1.25),
6.67% shift and 1.15 scaling factor. Under these conditions
the number of processed windows per 1628 × 1236 image
is higher than 12 million. For testing we use the same 2D
Testing dataset (Table 1). For the features, Haar-like masks
are computed on HSI channels, as before.

The Matlab/C++ scripts ran weeks for training all the
cascades for the sliding window approach. Compared to this,
the days of training for the original pipeline looks mod-

est. We trained cascades for each subclass of traffic signs:
triangle-up (28 stages cascade), triangle-down (27 stages),
circle-blue (26 stages), circle-red (23 stages), rectangle (23
stages) and diamond (25 stages).

The output of the cascades is processed further by a SVM
classifier that uses Haar-like features, pyramids of HOGs
and pixels in RGB space. All features are variance normal-
ized and mean subtracted and then concatenated into a single
feature vector, which serves as input to a linear SVM.

Fig. 11 shows the performance of the sliding window
approach, of the Det+Extr1 pipeline (Table 2), and of their
combination. The 2D Testing set has been used. The sliding
window approach outperforms the Det+Extr1 pipeline for
low numbers of FN or FP, both for the BB and TS criteria.
Nevertheless, if we allow for higher FN or FP (which is the
case, as the 3D analysis prunes away most single view er-
rors), then the Det+Extr1 pipeline is better in terms of TS
detections. The performance can be improved by combining
the sliding window and the Det+Extr1 pipelines. Their out-
puts are combined, all put through a linear SVM, and then
selected by thresholding their confidences. Fig. 12 shows
cases that could be detected by one pipeline but not the other.
Thus, if the computation time is not crucial, running both ap-
proaches is advantageous. In our single-core / single-thread
implementations, the Det+Extr1 pipeline is about 50 times
faster than the sliding window pipeline. The Det+Extr1 pipeline
achieves about 2 frames per second.

7.4 Part-based model comparison

Here we compare with the state-of-the-art generic object
class detector of Felzenszwalb et al. [8]. This discrimina-
tively trained part-based model detector is the top performer
of PASCAL VOC Challenge 2009 [6].

The system relies on discriminative training with par-
tially labeled data. The authors combine a margin-sensitive
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Fig. 11 Comparison with state-of-the-art methods. - Detection plots
for every time a sign appears (BB - bounding box level), or only de-
manding it is detected at least once (TS - traffic sign level). In blue one
finds results for the main pipeline presented in this paper. The results
for the alternative sliding window approach are shown in red. Green
shows results for their combined use. The combined performance is
better than the sliding window approach and our proposed approach
with Extr1 extraction setting taken alone. In cyan is the result of the
generic part-based model system from Felzenszwalb et al. [8]

approach for data-mining hard negative examples with a for-
malism called latent SVM which is a reformulation of MI-
SVM in terms of latent variables. A latent SVM is semi-
convex and the training problem becomes convex once latent
information is specified for the positive examples. This leads
to an iterative training algorithm that alternates between fix-
ing latent values for positive examples and optimizing the
latent SVM objective function. The HOGs are the basic fea-
tures employed by this method.

For a fair comparison, we use the publicly available scripts.
We train on the Training part of BelgiumTS (see Table 1)
a model with 5 components which correspond to the basic
shapes of the traffic signs. The 2D Testing material is used
for assessing the performance.

Fig. 11 shows how this part-based model detector com-
pares with our proposed systems. The poorer performance
when compared with our specialized systems is believed to
come from the fact that this approach is a generic one and
works on HOG features. The running time compares to the
sliding window approach for 2Mpxl images. The cascaded
version from the same authors [7] is expected to provide the
same accuracy and an up to 20 times speedup, but the system
is still far from realtime performance. Thus our Det+Extr1
pipeline exhibits better accuracy and is much faster than the
part-based models variants considered here.

a) Missed detections:

b) Detected only by sliding window:

c) Detected only by det+extr1:

Fig. 12 Complementarity of sliding window and the proposed ap-
proach. Shown are samples where both methods fail (a) and where one
method fails but the other one is successful (b,c), at the same threshold
level.

7.5 Multi-view evaluation

In this section, we report on the multi-view results. More-
over, in the single-view case we only paid attention to the
detection of traffic signs, not yet to their recognition or lo-
calisation. Here we will also cover these topics. The inclu-
sion of correct localisation within 3 meters in X-Y-Z within
the criteria explains why some of the scores go down with
respect to the single-view case. Most of the incorrectly 3D
localised traffic signs were detected in at least one view.

We evaluate our multi-view pipeline, based on Det+Extr1
single-view processing, on the 4 image sets of the 3D Test-
ing part of BelgiumTS (see Table 1). The evaluation is re-
stricted to a subset of 62 traffic sign classes. These include
all regular signs, but exclude direction indicators with text.
A breakdown of the test data per class, along with its achieved
performance, is shown in Fig. 13. The results are summa-
rized in Table 3. The operating point was selected to mini-
mize FP at better than 95% correct localisation. This could
be shifted towards a better localisation rate at the cost of
more FP (see Fig. 14 for false detections). Fig. 15 shows
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Table 3 Summary of 3D achieved results. Localised TS means cor-
rectly located traffic signs in 3D space, FP stands for false positives in
3D and Recognised TS are the 3D recognition results with respect to
the located 3D TS.

# No.frames No.TSs 3D Localised TS FP Recognised TS
18× 3001 99 94(95.0%) 3 90(95.7%)
28× 6201 87 83(96.5%) 7 81(97.6%)
38× 2001 47 44(93.6%) 2 43(97.7%)
48× 4001 86 83(96.5%) 8 81(97.6%)P
8× 15204 319 304(95.30%) 20 285(97.04%)

samples of missed traffic signs (i.e. not detected, misplaced
or wrongly classified). The main causes are occlusions, a
weak confidence coming from the detection and/or few views
where a sign is visible. The average accuracy of localisation
(distance between the 3D position according to the ground
truth and the 3D reconstructed traffic sign) is 26 centimeters.
90% of the located traffic signs are reconstructed within 50
centimeters from the ground truth, but we have also 3 traffic
signs that are reconstructed at more than 1.5 meters.

The recognition results are summarized in the last col-
umn of Table 3. The overall classification rate is 97% with
95.30% accurately 3D-localised traffic signs. In comparison,
Ruta et al. [25] achieve 85% classification rate with 86%
traffic signs detected, on a smaller dataset but using a real-
time system with only a single front camera and exploiting
tracking.

8 Discussion

Having introduced our system and the experiments that we
perform, we now discuss topics such as trading off perfor-
mance for speed, practical aspects and the generality of the
approach, and driver assistance/real-time applications.

8.1 Performance versus speed

The performance/speed tradeoff is an often returning topic.
We considered a processing time of 2fps (operating on 2Mpixel
images) to be sufficient if a very high detection rate (> 95%)
of close-by traffic signs (within 50 metres) and a very low
false detections per image (< 2) could be warranted. Our
experiments corroborated that using a multi-view/3D analy-
sis helps a lot in pruning the false detections while getting
very high 3D localisation rates. This is another observation
to keep in mind when putting together a final system.

Given the above, deploying a det+extr1 pipeline (see
Section 7) makes sense. This proved to yield a speed of 2fps
at a level of 96% detection rate and 2 false positives per
image (see Table 2), in line with our goals. Combined with
the multi-view/3D analysis MDL optimization we exceed
95% accurate 3D localisation rate (see Table 3) with very
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Fig. 13 Breakdown of the traffic sign class occurrence and perfor-
mance in the test data. The information is provided for each class as
a/b/c, where a–the number of distinct signs from the class correctly
3D localised and recognised, b–the number of distinct signs from the
class correctly 3D localised and c–the number of distinct signs from
the class that appears in the test data.

few false positives (20 in 8×15204 recorded frames). These
results are quite satisfactory given that our system working
without any human supervision.

In all steps we could trade speed off for better perfor-
mance in localisation. This is doable by using more basic
threshold methods in the segmentation step or combining
with complementary sliding window and/or part-based model
approaches (see Fig. 11). Also, if an human operator is post-
filtering the results then we could allow more false positives
at image level (for per image detection) and at the traffic
sign level (for 3D localisation), which would improve the
mapping performance.

8.2 Generality

The results in this paper have been presented with a partic-
ular application in mind and using a specific setup. Yet, the
proposed methods as well as the overall pipeline lend them-
selves to applications in different contexts and with different
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Fig. 14 False positives.

imagery. For instance, the optimisation for picking the best
thresholds has a general formulation (see Section 4). Param-
eters like κ1,2,3 can be adapted based on training data. The
number of annotations, the ratio between false positives and
negatives, and the precision of segmentation can be used to
set parameters. Thereafter, parameter settings can be fine-
tuned further on the basis of cross-validation with sets of
parameters in their close vicinity. The initial setting takes a
few hours, while cross-validating tens of settings would take
a few days, however.

Our cameras yielded substantially different colours. More-
over, the illumination conditions vary a lot (e.g. strong sun-
light, shadows). In the absence of a colour normalization
and/or illumination compensation of the input images, as in
our case, the segmentation thresholding criteria seem capa-
ble of largely making up for this. We have also experimented
with imagery of lower quality (also taken in Belgium, from
a different type of mobile mapping van) and the drop in
segmentation performance was less severe than anticipated,
with exactly the same thresholding criteria. Note that if a
different country would be involved, then certainly the de-
tection and recognition need to be retrained, as the signs will
be somewhat different.

8.3 Real-time applications

Our mapping system has always been intended for off-line
processing, mainly because our structure-from-motion runs
offline and has to be applied prior to the traffic sign part. In-
deed, it yields the necessary camera poses, needed for the
image fusion and 3D localisation. Otherwise, there clearly
is on-line potential. The det+extr1 pipeline (see Section 7)
works at 2fps on 2 Mpixel images and at 16fps on 640×480
pixel images (VGA resolution). The running time increases
linearly with the number of pixels. A speed of 16fps is al-
ready within the range for driver assistance. On the other
hand, for the automated mapping of traffic signs, there is no

critical need for on-line processing and it is better to make
the most out of the collected data in order to increase the
precision (e.g. after driving by the same spot multiple times,
which often happens for crossroads where many of the traf-
fic signs are to be found).

This said, we have experimented with driver assitance
as well, for which we proposed a slighly modified version
of our pipeline [27,23]. Typically only one camera can be
used in such case. Yet, still one can combine frame level
detection/recognition with 3D pose tracking. We obtained
a recognition performance per image level of about 97%,
using a linear SVM with pyramidal HOG features LDA-
projected to a 61-dimensional subspace. The traffic sign recog-
nition at track level was about 100% in the experiments and
we had almost no false detections or missed traffic signs.

9 Conclusions

Traffic sign recognition is a challenging problem. We have
proposed a multi-view scheme, which combines 2D and 3D
analysis. Following a principle of spending little time on
the bulk of the data, and keeping a more refined analysis
for the promising parts of the images, the proposed system
combines efficiency with good performance. One contribu-
tion of the paper is the integer linear optimisation formu-
lation for selecting the optimal candidate extraction meth-
ods. The standard sliding window approach is found to be
complementary to the proposed detection based on fast ex-
tracted candidates, but much slower for similar performance.
In case sufficient time is available, it is useful to combine the
proposed pipeline with sliding windows. Our experiments
show that the state-of-the-art part-based model [8] is slow
and performs poorer than our proposed system. Another con-
tribution is the efficient bounded evaluation of linear AdaBoost-
like classifiers which brings an important decrease in the
computational time. Another novelty is the MDL formula-
tion for best describing the 2D detections with 3D recon-
structed traffic signs, without strongly relying on sign posi-
tions with respect to the ground plane. Moreover, our task
includes accurate 3D localisation of the traffic signs, which
prior art did not consider.

In the future, we will research adding further semantic
reasoning about traffic signs. They have different probabili-
ties to appear at certain places relative to the road, and also
the chances of them co-occurring differ substantially.

Appendix

Appendix details the way of transforming eqs. (2,3,4) into
the 0-1 Integer Linear Programming form. Solution of for-
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a) b) c) d) e)

Fig. 15 Not detected(a,b), misplaced(c), or wrongfully classi-
fied(d,e) traffic signs.

mulated problems are found via MOSEK optimisation tool-
box3.

Let us suppose we are given n positive samples and m
different extraction methods (e.g. colour thresholding with
given threshold). Every method correctly extracts (i,e., with
sufficient accuracy) some subset of positive samples. De-
noting correctly extracted samples by ”1” and incorrectly
extracted samples by ”0”, each method is characterized by
an n-dimensional extraction vector. We align these vectors
row-wise into an n×m extraction matrix A. Introducing the
binarym-dimensional vector T , where selected methods are
again denoted by ”1” and not selected method by ”0”, the
number of False Negatives from the subset of methods given
by T corresponds to the number of unsatisfied inequalities
A · T ≥ 1n, where 1n denotes the n-dimensional column
vector of ones. Hence, introducing an n-dimensional binary
vector of slack variables ξ, the number of False Negatives is

FN(T ) = min
ξ

1>n · ξ

subj.to: A · T ≥ 1n − ξ, (16)

ξ ∈ {0, 1}n.

Let us be given the m-dimensional real valued vector b
containing the average number of False Positives for every
method 1 . . .m. number of False Positives is estimated on
traffic-sign-free images from an urban environment. Then
the average number of False Positives obtained using the
subset of methods given by T is

FP(T ) = b> · T (17)

Substituting from Equations (16),(17), yields ILP form
of Problem (2):

T ∗ = arg min
T ,ξ

κ1 · 1>n · ξ + b> · T

subj.to: A · T ≥ 1n − ξ (18)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.

Since card(T ) = 1>m · T , ILP form of Problem (3) is

T ∗ = arg min
T

κ11>n · ξ + (b> + κ2 · 1>m) · T

subj.to: A · T ≥ 1n − ξ (19)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.

3 http://www.mosek.com

Finally, introducing them-dimensional vector c with av-
erage accuracy of every method, ILP form of Problem (4) is:

T ∗ = arg min
T

κ11>n · ξ + (b> + κ2 · 1>m − κ3 · c>) · T

subj.to: A · T ≥ 1n − ξ (20)

ξ ∈ {0, 1}n, T ∈ {0, 1}m.
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